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Abstract

Forensic tools assist analysts with recovery of both the data and system events, even from corrupted storage. These
tools typically rely on “file carving” techniques to restore files after metadata loss by analyzing the remaining raw
file content. A significant amount of sensitive data is stored and processed in relational databases thus creating the
need for database forensic tools that will extend file carving solutions to the database realm. Raw database storage is
partitioned into individual “pages” that cannot be read or presented to the analyst without the help of the database
itself. Furthermore, by directly accessing raw database storage, we can reveal things that are normally hidden from
database users.

There exists a number of database-specific tools developed for emergency database recovery, though not usually
for forensic analysis of a database. In this paper, we present a universal tool that seamlessly supports many different
databases, rebuilding table and other data content from any remaining storage fragments on disk or in memory. We
define an approach for automatically (with minimal user intervention) reverse engineering storage in new databases, for
detecting volatile data changes and discovering user action artifacts. Finally, we empirically verify our tool’s ability to
recover both deleted and partially corrupted data directly from the internal storage of different databases.

Keywords: database forensics, file carving, memory analysis, stochastic analysis

1. Introduction

Because most personal and company data is stored in
digital form, forensic analysts are often tasked with restor-
ing digital data contents or even reconstructing user ac-
tions based on system snapshots. The digital data recov-
ery process is composed of both hardware and software
phases. Hardware techniques extract data from physically
damaged disks, while software techniques make sense of
the recovered data fragments. Our work presented here fo-
cuses on software-based restoration techniques in the con-
text of relational database management systems (DBM-
Ses). A well-recognized forensic technique is the process
of “file carving” that bypasses metadata and inspects file
contents directly. If a sufficient proportion of the file can
be recovered and recognized, then the content of the file
(e.g., images or document text) can then be restored.

It is our contention that a significant amount of data,
particularly what is referred to as Big Data, is not stored in
flat files, but rather resides in a variety of databases within
the organization or personal devices. Standard file carv-
ing techniques are insufficient to meaningfully recover the
contents of a database; indeed, without the metadata of
the DBMS (catalog), the contents of database tables could
not be presented to the forensic analyst in a coherent form.
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The work presented here thus bridges this gap by intro-
ducing a novel database carving approach that allows
us to reconstitute database contents and reason about ac-
tions performed by the database users.

1.1. Our Contributions
We present a comprehensive collection of techniques

for forensic analysis of both static and volatile content in
a database:

• We define generalized storage layout parame-
ters for parsing the raw storage (including the volatile
kind) of many different relational databases.

• We compare and contrast different storage design
decisions made by a variety of DBMSes and discuss
the resulting implications for forensic analysis.

• We present a tool that can reverse-engineer new
DBMS storage parameters by iteratively loading
synthetic data, executing test SQL commands and
comparing resulting storage changes.

• We also present a tool that, given a disk image or
a RAM snapshot can do the following:

– Identify intact DBMS pages, even for multiple
DBMSes on the same disk, for all known storage
configuration parameters.

– Recover the logical schema (SQL tables and
constraints) and all database table rows for
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Figure 1: Overview of parameter detection and data analysis.

known parameters (a parameter set will sup-
port several different versions of the DBMS, de-
pending on storage changes version-to-version).

– Extract a variety of volatile data artifacts
(e.g., deleted rows or pre-update values).

– Detect evidence of user actions such as row
insertion order or recently accessed tables.

1.2. Paper Outline
Figure 1 shows the high-level architecture overview. In

Section 2 we review the principles of page-based data stor-
age in relational databases and define the parameters for
parsing and recovering these pages. In the same section we
also summarize important database-specific storage struc-
tures (i.e., non-tables) and discuss the fundamentals of
volatile storage and updates. In Section 3, we analyze the
interesting storage layout parameter trade-offs and explain
how these parameters and some user actions can be dis-
covered within a DBMS. Section 4 reports experimental
analysis results for a variety of different databases and en-
vironment scenarios. Finally, Section 5 summarizes related
work and Section 6 contains the conclusions and mentions
a number of promising future work directions.

2. Database Storage Structure

The storage layer in relational databases partitions all
physical structures into uniform pages with a typical size
of 4 or 8 KBytes because using a fixed page size signifi-
cantly simplifies storage and cache management. Page size
can be changed by the database administrator, but such a
change requires rebuilding data structures: page size can-
not be changed for individual tables, at a minimum it is
global per tablespace. Two different layers of metadata
are involved in database storage: the general information
that describes where and how the tables are stored and
the per-page metadata for the contents of each individual
page. The forensic challenge lies in reconstructing all sur-
viving database content directly from disk (or memory)
image using only the metadata included with each page.
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Figure 2: A structural overview of a database page.

From a high level perspective, all relational database
pages share the same general structure and break down
into three components of interest: the header, the row di-
rectory and the row data itself. Depending on the specifics
of each database, the page header stores general page in-
formation (e.g., table or an index? or which table or in-
dex is it?). This part of the overhead is found at the
beginning of the page structure. The row directory com-
ponent is responsible for keeping track of the row loca-
tions as new rows are inserted or old rows are deleted.
This row directory may be positioned either between the
page header and the row data or at the very end of the
page following the row data. The third component is the
row data structure that contains the actual page content
along with some additional overhead. Figure 2 shows an
overview of how these structures typically interact within
a page; the “other structures” area can contain other op-
tional elements only relevant under specific circumstances
(e.g., particular kinds of updates). We next describe the
comprehensive set of parameters used to parse table page
storage for the eight different DBMSes.

2.1. Page Storage Layout Parameters
The content of each component on a database page

can be described by a general set of parameters. Creat-
ing a database-specific tool would have been significantly
easier, but our goal was to develop a generalized foren-
sic approach that can support many databases and can
be easily expanded to support even more. Once the de-
scriptive parameters have been generated for a particular
database (Section 3.2 discusses how we automate this pro-
cess), our code can identify pages and parse data from a
page belonging to that database. The set of parameters
presented here has been generalized to support a variety
of DBMSes (listed in Section 4). In the rest of this sec-
tion, we explain the purpose of each parameter for each
page component. Section 3.1 expands on this discussion
by analyzing the significance of the parameters that affect
interesting storage and reconstruction trade-offs.

Page header parameters. The page header contains values
that define page identity and its membership in a database
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structure. Figure 3 outlines the parameter and the corre-
sponding page layout (the parameters are not stored con-
tiguously, but the addresses are fixed). The general page
identifier address locates the position of where the general
page identifier can be found – general page identifier is
used for detecting page presence in disk image and helps
determine the type of the page contents (index vs table or
other). The structure identifier address points us to the
ID of the particular structure to which the page actually
belongs (e.g., customer table). Finally, unique page identi-
fier address and unique page identifier size allow detecting
the unique ID of each particular database page.

Row directory parameters. The row directory maintains
an overview of where each row is stored within the page
– Figure 4 provides a visual view of how that information
is stored. The row directory contains a list of addresses
where each address points to a particular row and may
also keep track of deletions or modifications applied by
database users to each row. The row directory address de-
termines the location or the very first address contained
within row directory; the address size tells our tool how
many bytes there are between each subsequent directory
address. In order to deconstruct each address within row
directory we need the high value position and the address
conversion constants (Cx and Cy), which are then substi-
tuted into the Addressn formula in Figure 4). The high
value position determines which byte is the Yn parameter
in that computation. The directory order sequence simul-
taneously determines two things about row directory stor-
age: the row directory may be stored after the page header
and grow incrementally or at the end of the page with
each new address preceding the previously added address.
Figure 4 assumes the former option, but Figure 5 has ex-
amples of the latter. One variable not explicitly shown in
Figure 4 is the slot size, which determines whether the row
directory is sparse or dense. That is, the slot size value of k
means that row directory addresses only point to each kth

row in the page – setting k to value higher than 1 reduces
the row directory overhead. Finally, the address deletion
parameter tells us whether the address of a row in the row
directory will be set to NULL when that row is deleted.
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Figure 4: Row directory structure.

Row data parameters. The third and final component in a
database page is the actual row data, which takes up the
majority of page space. Table 1 lists the parameters used
by our recovery tool, partitioned by parameter category
and including a brief explanation. The row identifier is
particularly significant because it represents a database-
generated ID that does not belong to the data – if present,
this identifier is generated in different ways by different
DBMSes. The column count parameters helps us parse the
column values from each row – note that column count does
not always match the actual number of columns in a table
because it may include the row identifier. As discussed in
Section 3.1, it is common for string values but not other
types of values to include a size, so most of the column
size settings refer to string columns (although we did ob-
serve this for NUMBER/DATE types in Oracle). The column
directory in Table 1 is the per-row equivalent of the row
directory. While the row directory stores addresses that
locate rows in a page, the column directory keeps track of
individual value addresses in each particular row. The raw
data parameters describe the location and the delimiters
and any other extra overhead present among the stored
values, while the data decoding parameters describe the
size information for individual values in the row.

Figure 5 shows a few structurally different examples
of row data layout on the page. Row data content may
be placed in the middle (between page header and row
directory) or at the end of the page. In addition to the
actual raw values, this component may contain delimiters
that separate different fields in a row, individual attribute
sizes or the total count of columns.

2.2. Non-Table Database Structures
While much of the data content resides in tables, other

database structures can prove very useful for rebuilding
data and reasoning about volatile changes. Here we briefly
describe some of these structures although we do not in-
clude the corresponding parsing parameters or go into ex-
cessive detail owing to space limitations. Since data tables
contain the “original” data, these auxiliary structures are
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Row Structure Parameter Description
Row Delimiter The delimiter between rows.

Row Identifier Exists Is an internal row identifier present? (not part of original data)
Static Size Do all row identifiers have a fixed size?

Column Count

Exists Is a column count is present?
Includes Row Identifier Does the column count include the row identifier in the count?
Delimiter A delimiter used to locate column count that follows.
Fixed Position Is the column count at a fixed position?
Position Location of the column count.
Pointer Exists Does a pointer locate the column count?
Pointer Position Address at which the column count is located.
NULL Markers Is the column count marked by NULLs?

Column Size

Exist Do column sizes for strings exist in the page?
In Raw Data Are column sizes with the raw data?
Float Are column sizes at a floating location?
Fixed Position Are column sizes at a fixed location?
Position Location of the column sizes within the page.

Column Directory

Exists Does a column directory exist? (pointers to row attributes)
Address Size The size of a column address.
Fixed Position Is the column directory at a fixed position?
Succeeds Column Count Are the column addresses found after the column count?
Position The location of the column directory.

Raw Data

Extra String Overhead Size of extra overhead between strings.
Fixed Position Is the raw data placed at a fixed location within a page?
Succeeds Column Directory Does the raw data follow the column directory on page?
Delimiter A delimiter used to locate the raw data.
Succeeds Header Sizes Does the raw data follow the column sizes in the row header?
Position The location of the raw data.
NULL Markers NULL bytes used to locate the raw data.

Data Decoding

String Conversion Constants A set of constants used to decode string size.
Numbers Stored with Strings Are raw numbers stored with raw strings?
Numbers Static Size Is the same number of bytes are used to a store a number?
Numbers Size The number of bytes used to store a number.

Table 1: A list of parameters used to describe the row data of a database page.

redundant in that they may be dropped without losing
any raw data; the most common reason for adding auxil-
iary structures is to shorten user query runtime.
Indexes. An index is an auxiliary structure that helps
locate rows within a database table. For example, con-
sider a customer table from SSBM benchmark by O.Neil
et al. (2009) – a table is typically sorted by customer
ID or not at all. A query searching for a particular city
(city = ’Boston’) would have to scan the entire table,
but constructing an index on the city column can expe-
dite the search by building an additional structure that
stores value-pointer pairs (e.g., [Boston, Row#2], [Boston,
Row#17], [Chicago, Row#12]). Index structures are stored
in database pages with a layout similar to that of table
pages described here (in many ways, an index is a table
with two special columns).

Besides the data values, several unique pieces of in-
formation can be extracted from indexes. First, indexes
are often automatically created for primary keys (that are
part of join connections between tables) and thus help in
reconstructing the logical table structure. Second, indexes
are stored as a tree structure Comer (1979) in order to
reduce maintenance overhead, which means values cannot

be overwritten in-place (in tables, values can sometimes
be overwritten in-place). As a result, changes made to an
indexed column (city in our example) will, on average, re-
main visible (to our tool) in the index storage for much
longer than in the original table.

Materialized views (MVs). Intuitively, MVs are dynami-
cally constructed tables – not to be confused with regular
views that are simply a “memorized” query and are not
physically stored. For example, if the SQL query SELECT
* FROM Customer WHERE City = ’Boston’ (i.e., give me
all customers from Boston) is executed often, the database
administrator may choose to construct a BostonCustomers
MV that pre-computes the answer in order to speed up
that query. MVs are stored in the same way as tables
but provide additional information because they are not
necessarily updated at the same time as the source table.

Transactions and logs. Transactions help manage concur-
rent access to the database and can be used for recovery.
For example, if a customer transfers $10 from account A to
account B, transactions are used to ensure that the tran-
sient account state cannot be observed by the database
users. Individual changes performed by transactions are
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Figure 5: Different layout choices for row data and row directory within a page.

stored in the transactional log (e.g., <A, $50, $40>, <B,
$5, $15>), which can be used to undo or reapply the
changes, depending on whether the transaction success-
fully executed COMMIT (i.e., been “finalized”).

2.3. Volatile Storage
DBMSes maintain a cached set of data pages in RAM

(buffer cache) to speed up query access and updates. When
initially accessed, data pages are read into memory as-is;
however, when database users make changes (e.g., inserts
or deletes), pages would be modified in-place, creating so-
called dirty pages. Eventually, the data page is evicted
from the cache and written back to disk, replacing the
original page. Just as when storing data on disk, there
is a significant similarity in how different DBMSes handle
page modification. Inserts, deletes and updates create op-
portunities for recovering old, new or even tentative data
(transactions can be aborted). We discuss the implications
of changing data in different DBMSes in Section 3.3.

There are several distinct stages at which volatile data
changes may still be discovered. First, there are tentative
changes that are only reflected in the memory cache – if
the change is canceled, the dirty page will likely be sim-
ply discarded. Since indexes cannot be changed in-place,
should the updated column be indexed, index changes will
persist for a longer time, even if the update was canceled
and data page discarded. Second, if the update is con-
firmed (transaction COMMIT), the dirty page will eventu-
ally be written to disk. In that case the updates will be
visible for an even longer period of time until the page
is rebuilt. Although physical data structures may be de-
fragmented manually, this process is expensive and rarely
invoked. Individual pages may also be occasionally rebuilt
by the DBMS, depending on many factors (e.g., settings
of when and how newly inserted rows can overwrite “free”
space left by deleted rows).

3. Deconstructing Database Storage

In this section, we delve into how parameter usage
varies between different DBMSes and discuss the implica-
tions of the storage design choices. Our tool currently sup-
ports eight distinct DBMSes: Oracle, PostgreSQL, MySQL,
SQLite, Apache Derby, DB2, SQLServer and FireBird (Sec-
tion 4 lists DBMS versions and parameter settings).

3.1. Database Storage Parameter Trade-offs
As illustrated in Table 2, the majority (six out of eight)

of the DBMSes use the structure identifier which makes
it easier to detect the presence of pages in the data im-
age snapshot and simplifies reassembling DB structures
from individual pages. For the remaining two databases,
our tool has to rely on the column count to reconstruct
the schema of each structure (both of these databases do
use column count). Therefore in those two databases, two
tables with identical schemas (same number of columns
and all column types are the same) may be erroneously
merged into one table when rebuilt. A unique page identi-
fier is available in all but one of the databases, letting us
match the identity of the same page (e.g., between on-disk
and in-memory). In some cases, the unique page iden-
tifier is a composition of different IDs (e.g., file ID plus
the page ID) providing some additional information. The
choice of row directory sequence is split (five versus three)
between the different DBMSes. The ordering of the row
directory is helpful when recovering data because it deter-
mines in which sequence rows were initially inserted/added
to the page. The presence or absence of the row identifier
is evenly split between the different databases – in Section
3.3 we will also show that the presence of the row identifier
is particularly significant when recovering data in presence
of updates and deletes.

Most databases use column count (six versus two), which
simplifies the process of parsing the page. Without the
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Parameter Oracle
Postg

reS
QL

SQLite
Fireb

ird

DB2
SQLServ

er

MySQL
ApacheD

erb
y

Structure Identifier Yes No Yes No
Unique Page Identifier Yes No
Row Directory Sequence Top-to-bottom insertion Bottom-to-top insertion
Row Identifier No Yes No Yes
Column Count Yes No Yes No Yes
Column Sizes Yes No Yes
Column Directory No Yes No
Numbers Stored with Strings Yes No Yes

Table 2: A summary of significant trade-offs made by DBMSes in page layout.

explicit column count, additional effort is required for re-
constructing table contents – in essence our tool would
need to discover the schema (see Section 3.2). Once the
table schema has been determined, we use structure iden-
tifier to identify its other pages – in all of the databases
we have seen so far, at least one of the structure identifier
or column count was always present. Similarly to column
count, column sizes are commonly present in a database
page (in six out of eight databases). The use of column
sizes is directly connected with presence of a column di-
rectory structure within the raw data. Intuitively, explic-
itly storing column sizes simplifies parsing the individual
values; without sizes, databases use a directory that spec-
ifies how to find columns within the row. This parame-
ter choice also coincides with the raw numbers stored with
strings decision, as having a column directory means that
the columns do not have to be stored sequentially and can
be interleaved. However, even if strings and numbers are
stored separately the relative ordering (among strings and
among numbers) is still preserved.

3.2. Parameter Discovery
With the exception of modest user intervention, the

collection of storage parameters described in Section 2 is
automated in our tool. We use a combination of our own
synthetically generated data and the SSBM benchmark
data to iteratively populate a database and use the result-
ing storage snapshots to auto-detect the parameter values.

Automated parameter discovery. User intervention primar-
ily involves creating a configuration file for our tool to
define the following database characteristics: page size
setting, directory where the database file(s) are stored,
database name, and the login credentials that have suf-
ficient privileges to create tables/load data. If this is a
new DBMS, a wrapper class for that database needs to be
created, which will expose a function that can take a user
name, user password, database name and SQL file as argu-
ments, and run the SQL commands against the database.
During parameter discovery, we perform inserts individ-
ually (without a bulk loader) because such tools do not
preserve the insert order of the rows.

The SQL schema file (e.g., CREATE TABLE commands)
may require changes depending on the particular database
because, unfortunately, different data types are defined in-
consistently. For example, owing to legacy issues, Oracle
uses the VARCHAR2 type instead of VARCHAR type. Also, in

most databases implement DATE type differently (it may
include the time or a separate TIMESTAMP may be present).
Some global settings may also need to be adjusted: MySQL
needs to have the storage engine set to InnoDB because
the old storage engine (which is no longer used in recent
versions) does not use pages.

Recovering database schema. If the table schema is not
available and no column count is present in the pages,
discovering the original schema requires additional work.
Our tool approaches that problem by approximating the
schema and parsing the data under that assumption. If
the schema is incorrect, the parser eventually encounters
an error while deconstructing the data and a new schema is
attempted instead. Only three out of the eight databases
may require this approach and, since they all include a
structure identifier, once the schema of the page has been
discovered, all other pages from the same structure are
easy to identify.

By looking at the recovered data, we can also discover
other components of the schema. We automatically iden-
tify columns that contain unique values throughout the
entire table, which tells us that the column is likely to
have a UNIQUE or a PRIMARY KEY constraint. By compar-
ing these columns we can identify primary keys (because
foreign keys refer to primary keys).

3.3. Reconstructing Volatile Artifacts
When database contents are updated, that action cre-

ates a number of opportunities. First, we can recover
the newly introduced data from inserts and updates. Sec-
ond, we can recover recently performed user actions (i.e.,
reconstructing the fact that data was inserted, deleted
or updated). Third, we can discover information about
the changes that were canceled and undone (i.e., aborted
transactions). The latter category is the most interesting,
because this information would normally be unavailable to
users even if the database were operating normally.

INSERT. Insert operations supply relatively little infor-
mation (beyond data itself) because a brand new row is
created. We can use the storage order to reconstruct the
order of insertion. For performance reasons, new rows
would typically be appended to existing (partially free)
database pages as they are inserted into tables. We can
also sometime determine if the entire page has been bulk
loaded based on the insert pattern; if the rows were in-
serted individually, we can determine that insert order.
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DELETE. The deletion of rows provides more informa-
tion. Just as file systems marks a file “deleted”, databases
would mark rows “deleted” as well. Space limitations
prohibit us from including the parameters that describe
how data is deleted in different DBMSes; however, we do
summarize what different databases actually do on delete.
When a row is deleted in Oracle and ApacheDerby, the
page header and row delimiter are marked. When a row
is deleted in PostgreSQL, the page header and raw data
delimiter are marked. When a row is deleted in MySQL,
page header and row metadata is marked. When a row
is deleted in SQLite, the page header is marked and the
row identifier is deleted. When a row is deleted in DB2,
SQLServer and Firebird, the page header is marked, and
the row directory address is deleted.

UPDATE. Although from database user perspective an
update is a combination of a delete followed by an insert,
the underlying storage changes are handled very differ-
ently. As with deletes, we summarize how updates are
handled by the different DBMSes. When a row value is
updated with a new value of a size equal to or less than the
previous entry for Oracle, SQLite, DB2, and SQLServer,
the page header is marked and the old row data is over-
written in-place. When a row is updated to a size equal
to or less than the previous row for PostgreSQL, the page
header and raw data delimiter are marked and the old raw
data is written over. When a row is updated to a size
equal to or less than the previous row for MySQL and
ApacheDerby, the page header and the row metadata are
marked and the old raw data is written over. When a
row is updated to a size equal to or less than the previ-
ous row for Firebird, the page header is marked and the
rows are reinserted. The only behavior consistent among
all databases is when a column is updated to a size larger
than the previous row value, in which case the old row
deleted and the new row is inserted.

4. Experiments

Our current implementation of the forensic analytic
tool supports eight different RDBMS systems under both
Windows and Linux OS. The breakdown of supported func-
tionality is listed in Table 3 (more features are under de-
velopment). The parsing rate currently falls in the range
between 5.5 MB per second to 26.5 MB per second, de-
pending on the specifics of each database storage layout.
Our experiments were carried out using an Intel X3470
2.93 GHz processor with 8GB of RAM; Windows servers
run Windows Server 2008 R2 Enterprise SP1 and Linux
exeriments use CentOS 6.5. The cloud based instance in
Experiment 3 used Intel Xeon 2.5 GHz processor with 2GB
of RAM. Windows operating system memory snapshots
were generated using a command-line tool User Mode Pro-
cess Dumper (version 8.1). This tool outputs a process
memory dump for a given a process identification number.
Linux operating system memory snapshots were generated

Functionality Supported DB
General Page Detection [1, 2, 3, 4, 5, 6, 7, 8]
Table Page Parsing [1, 2, 3, 4, 5, 6, 7, 8]
Index Page Parsing [1, 2, 3, 4]
Materialized View Parsing [1, 2]
String Decoding [1, 2, 3, 4, 5, 6, 7, 8]
Integer Decoding [1, 2, 3, 4, 5, 6, 7, 8]
Date Decoding [1, 2, 3, 4, 5, 6, 7, 8]
[1]Oracle, [2]PostgreSQL, [3]SQLServer, [4]DB2,
[5]MySQL, [6]SQLite, [7]Firebird, [8]ApacheDerby

Table 3: A summary of supported parsing functionality.

by reading the process’ memory under /proc/$pid/mem.
For on-disk pages we either read the database storage files
or deconstructed the data directly from a hard drive im-
age since we do not need the file structure. Figure 6 shows
a few sample lines of output produced by our tool (for a
table and an MV) in Windows.

Experiment 1: Testing a variety of DBMS versions. We
begin by verifying that our carver tool supports different
version of the eight databases. In our initial experiments
we used the version that was easiest to acquire, but here
we install and test a variety of other DBMSes, also veri-
fying that our tool can handle both Linux and Windows.
Table 4 summarizes different versions, operating systems
and parameter settings that we used. Acquiring older ver-
sions of some databases has proven to be challenging, we
also had difficulty installing some older software, such as
PostgreSQL 6.3.2 (circa 1999) on our servers.

For databases listed in Table 4 we verified that our
parameter discovery mechanism (described in Section 3.2)
was able to auto-detect necessary parameters and success-
fully reconstruct data from pages. Not surprisingly, we
found that for most alternate versions, the storage layout
had not changed from version to version. However, we did
find a number of changes in PostgreSQL 7.3: the values for
the general page identifier and its address, the structure
identifier position, row directory address, the conversion
constants for both row directory and string size computa-
tion and the delimiter used to separate row data have all
changed to a different value between PostgreSQL 7.3 and
PostgreSQL 8.4. Thus a variety of DBMS versions can
be handled by the same set of known parameters but if
the underlying storage changes, we need to detect the new
parameters.

Experiment 2: Rebuilding row data. In this experiment
we evaluate our tool’s ability to reconstruct data straight
from an image with DBMS pages. The process of re-
building page contents is the same for disk or memory
(the only difference being that an in-memory copy of the
page may temporarily differ from its on-disk version due
to updates). Furthermore, the contents of the database
cache buffer provide some insight into the rows that were
recently accessed by user queries, so we chose to visual-
ize the database cache buffer as different queries are be-
ing executed. Figure 7 shows the contents of the Oracle
(50K pages) cache buffer, with each dot representing a
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Figure 6: Sample recovered data, both from a table page and an MV page.

single page and a bar chart summarizing the page counts.
Initially buffer cache is prepopulated with synthetic data
from several tables (aggregated into one bar in the bar
chart), which is shown in the first snapshot and the corre-
sponding bar chart below.

The second image in Figure 7 shows cached pages after
customer and part tables were queried for a total of about
7000 disk pages (using 50 different queries) with the corre-
sponding bar chart below; the following two images show
what happens after the lineorder table has been repeatedly
accessed by queries. The third snapshot shows caching ef-
fects after executing 100 (120-page) lineorder queries (sum-
marized in the third bar chart) and the fourth image shows
the results of executing 200 more similar queries which ef-
fectively overwrite the entire cache buffer, replacing all of
the previously cached data. While lineorder queries add
up to approximately (300 ∗ 120) 36K pages, recall that in-
dexes are commonly used to facilitate table access. Thus,
there is a number of index pages, not shown on the bar
chart, that are present in the last snapshot visualization.

The contents of the current buffer cache snapshot re-
flect the data that was accessed recently. However, note

DBMS Version
Testing
OS

Buffer
Size(MB)

Page
Size(KB)

Apache Derby 10.10 Linux 400 4
Apache Derby 10.5 Linux 400 4
DB2 Express-C 10.5 Linux 400 4
Firebird 2.5.1 Linux 400 8
Firebird 2.1.7 Windows 400 8
MySQL Server 5.1.73 Linux 800 16
MySQL Server 5.6.1 Windows 800 16
Oracle 11g R2 Windows 800 8
Oracle 12c R1 Windows 1200 8
PostgreSQL 7.3 Linux 400 8
PostgreSQL 8.4 Linux 400 8
PostgreSQL 9.3 Windows 800 8
SQLite 3.8.6 Linux 2 1
SQLite 3.8.7 Windows 2 1
SQLServer 2008
Enterprise

Windows
(Linux)

800 8

Table 4: The comprehensive list of all databases used in this paper.

that all of the queries in this experiment were chosen to
ensure that their pages are fully cached. A detailed discus-
sion about database caching policies is beyond the scope
of this paper, but note that when a query is accessing a
large number of pages (e.g., more than one third of the
total buffer cache size), only a particular portion of the
read data is be cached. This is done to avoid evicting too
many other table’s pages from buffer cache and is used to
reason about what table data was recently accessed.

Experiment 3: Reconstructing corrupted data. We next
evaluate our forensic tool when the raw data has been
damaged as well. Using one of the popular cloud ser-
vice providers, we rented an instance and created a new
database using PostgreSQL – here we use a cloud service
to illustrate that data can be scavenged from neighbor-
ing or decommissioned instances if they are not properly
sanitized (actually trawling the instances for private data
would be against the ToS). After loading PostgreSQL with
the SSBM benchmark (Scale4, 24M rows in the lineorder
table), we have shutdown the database and deleted (using
rm) the files that contained database storage.

Deleted disk space is marked “available” and will even-
tually be overwritten by new files. We simulate this over-
write process by performing random 1 KB writes through-
out the disk image at random. We use small writes in order
to test our tool’s ability to rebuild pages when pages are
partially damaged (if the entire page is overwritten, then it
is simply gone). Once a certain percentage of 1 KB chunks
was written to disk at random, we measured the amount
of data that our tool could reconstitute. Table 5 summa-
rizes the the results in terms of the recovered table pages.
The second column has the initial number of blocks, be-

Damage Dmg=0% Dmg=10% Dmg=25%
Dwdate 35(100%) 31(88.6%) 20(57.1%)
Supplier 565(100%) 455(80.5%) 326(57.7%)
Customer 1915(100%) 1559(81.4%) 1075(56.1%)
Part 8659(100%) 6969(80.5%) 4864(56.2%)
Lineorder 115K(100%) 104K(89.9%) 87K(75.2%)
TOTAL 416K(100%) 374K(89.9%) 312K(74.9%)

Table 5: Disk data damage experiment.
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Figure 7: Transformation of buffer cache contents as queries are executed.

fore any page damage had taken place, and then we show
the distribution for 10% and 25% worth of damage. While
the exact losses vary depending on each particular table’s
luck, the average number of restored pages closely matches
the amount of inflicted damage.

Finally, note that running a query in PostgreSQL af-
ter overwriting page metadata caused The connection to
the server was lost. Attempting reset: Failed.;
changing the size of the table storage file (e.g., adding
or removing a few bytes) caused ERROR: invalid memory
alloc request size 2037542769.

Experiment 4: The echoes of a database delete. In this ex-
periment, we test a DBMS to see when a deleted value is
really deleted. Using Oracle, we created an index on the
phone column in the customer table as well as a materi-
alized view that contains a few of the customer columns,
including phone. At time T0, the phone value is present on
disk in three different pages (in the table, the index and the
MV). Table 6 shows the timeline of all three structures on-
disk (HDD) and in-memory (RAM) – a � symbol means
that the phone number can also still be returned by
a SQL query and both 3 and 7 symbols mean that the
value is inaccessible by SQL but can be recovered by
our tool. The 3 symbol means we can restore the phone
number itself and 7 symbol means that we can both ex-
tract the phone number and determine that it was already
marked as deleted.

• At T1 a phone row is deleted (including a COMMIT) by a
user – this causes an index page with the phone (index
values cannot be marked deleted) and a table page
with the phone marked as deleted to be cached in RAM.

• At T2 user queries the MV causing the phone page to
be cached in RAM.

• At T3 the MV is refreshed, the RAM page is removed
and new MV no longer contains the phone (fragments
of the old MV page may still be available in RAM).

• By T4 a series of queries (enough to overwrite the
buffer) are executed, evicting the index page from RAM.
Because customer table is accessed by a user, the table
page containing the deleted phone remains in RAM.

• By T5 a long series of queries is executed during which
customer table is not accessed, evicting the table page
with phone entry from RAM.

• At T6 the index is rebuilt and flushed from RAM.
• At T7 the table is rebuilt and flushed from RAM.

Thus the deleted value is truly gone by time T7 which,
depending on database activity, may be a very long time
away from time T0. In some databases (including Ora-
cle) MV behavior can be configured to automatically re-
fresh; the value may also be overwritten by new inserts,
but only after a certain number of rows on the page has
been deleted.

Event
Table Index MV

HDD RAM HDD RAM HDD RAM
T0 � 3 �
T1 3 7 3 3 �
T2 3 7 3 3 � 3
T3 3 7 3 3
T4 7 7 3
T5 7 3
T6 7
T7

Table 6: A timeline for the true deletion of a deleted phone value.
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5. Related Work

Drinkwater had studied carving data out of SQLite
storage Drinkwater. SQLite had been the focus of forensic
analysis particularly because it is used in Firefox Pereira
(2009) and in a number of mobile device applications Pieterse
and Olivier (2014). Chivers and Hargreaves (2011) investi-
gated recovery of deleted records from the Windows Search
database. OfficeRecovery provides a number of commer-
cially sold emergency recovery tools for corrupted DBMSes
OfficeRecovery (b,c,a) that support several versions of each
DBMS. OfficeRecovery products recover most of database
objects (except for constraints) – for Oracle that also in-
cludes backup file recovery which is not something we cur-
rently support because our primary focus is on a universal
multi-DBMS tool. Percona Projects supplies a tool that
recovers corrupted or deleted tables in MySQL Percona,
but does not recover the schema (and in fact requires that
the user to provide the descriptive data structure for the
schema). Stellar Phoenix sells DB2 recovery software for
IBM DB2 (UDB) v8 Phoenix (a) as well as MS SQL Server
for multiple versions Phoenix (b).

Forensic data analysis is generally concerned with re-
covering partially damaged remnants of a file, typically
from a hard drive. Seminal work by Garfinkel (2007) dis-
cusses efficient file carving strategies that rely on file con-
tent rather than metadata, in order to restore the content
of a hard drive. Brown (2013) presents a mechanism for
recovering a compressed file that includes a corrupted re-
gion. Similarly, research that concentrates on the analysis
of volatile memory (RAM flash memory) tends to look for
particular patterns of interest. Grover (2013) describes
a framework for identifying and capturing data from an
Android device in order to protect that device from mal-
ware or investigate and/or audit its owner. Approaching
volatile data analysis also benefits from stochastic forensics
defined in Grier (2011), which derives probabilistic conclu-
sions about user actions based on side effects of these ac-
tions. Our approach relies a similar idea, with page layout
and database caching acting as side effects. Guido et al.
(2013) describes collecting data from a running Android
device to identify patterns of malicious software. The
goal is to identify malicious applications without an apriori
known signature by observing system events in real-time.
Work by Okolica and Peterson (2010) presents a gener-
alized process of performing a version-agnostic Windows
memory dump analysis. Similarly, it is our goals is to
generalize the process of database carving (disk or RAM)
across all DBMSes and operating systems.

6. Conclusion and Future Work

We presented a forensic tool that can auto-detect inter-
nal DBMS storage mechanics for new databases and recon-
struct the data structure and contents of known DBMSes.
Due to the particular storage techniques employed by rela-
tional databases, our tool is able to restore any remaining

fraction of a DBMS as well as already-deleted and other-
wise inaccessible data. This generalized forensic tool can
thus eventually supplant the DBMS-specific recovery tools
currently available to forensic analysts. We intend to re-
lease our code to the wider community and think that it
can also serve as an independent open-source auditing
tool for all (including closed-source) DBMSes.

This work only begins to explore the possibilities opened
up by looking into the raw database storage directly. In ad-
dition to the self-evident benefit of reconstructing database
contents, we can learn a great deal of other subtler facts.
DBMS data caching behavior can be directly observed to
monitor user database activity based on internal caching
heuristic rules; databases also cache a number of other ele-
ments of interest (e.g., SQL queries, raw user output) that
can be captured. Finally, looking at the page storage of-
fers precise fragmentation knowledge, which opens up op-
portunities for improving database design by performing
tailored defragmentation.
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