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Abstract

When a file is deleted, the storage it occupies is de-allocated but the contents of the file are not erased. An
extensive selection of file carving tools and techniques is available to forensic analysts – and yet existing file carving
techniques cannot recover database storage because all database storage engines use proprietary and unique storage
format. Database systems are widely used to store and process data – both on a large scale (e.g., enterprise networks)
and for personal use (e.g., SQLite in mobile devices or Firefox). For some databases, users can purchase specialized
recovery tools capable of discovering valid rows in storage and yet there are no tools that can recover deleted rows or
make analysts aware of the “unseen” database content.

Deletion is just one of the many operations that create de-allocated data in database storage. We use our Database
Image Content Explorer tool, based on a universal database storage model, to recover a variety of phantom data: a)
data that was actually deleted by a user, b) data that is marked as deleted, but was never explicitly deleted by any user
and c) data that is not marked as deleted and had been de-allocated without anyone’s knowledge. Data persists in active
database tables, in memory, in auxiliary structures or in discarded pages. Strikingly, our tool can even recover data
from inserts that were canceled, and thus never officially existed in a data table, which may be of immeasurable value
to investigation of financial crimes. In this paper, we describe many recoverable database storage artifacts, investigate
survival of data and empirically demonstrate across different databases what our universal, multi-database tool can
recover.
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1. Introduction

Deleted files can be restored from disk, even if the stor-
age is corrupted. File carving techniques look for data
patterns representative of particular file type and can ef-
fectively restore a destroyed file. For numerous reasons
(e.g., recovery, query optimization), databases hold a lot
of the valuable data and yet standard file carving tech-
niques do not apply to database files. Work by Wagner et
al. [1] described that, primarily due to the unique stor-
age assumptions, database carving solutions must take an
entirely new approach compared to traditional solutions.

Our motivating philosophy is that a comprehensive an-
alytic tool should recover everything from all databases.
Beyond simple recovery, forensic analysts will benefit from
seeing the “hidden” content, including artifacts whose ex-
istance is a mystery. In this paper, we deconstruct database
storage and present techniques for recovering database
content that does not officially exist. We use our
Database Image Content Explorer (DICE) tool to restore
deleted and de-allocated data across a variety of different
Database Management Systems (DBMSes).

Email addresses: jwagne32@mail.depaul.edu (James Wagner),
arasin@cdm.depaul.edu (Alexander Rasin),
jdgrier@grierforensics.com (Jonathan Grier)

1.1. Our Contributions

We present forensic analysis and recovery techniques
tailored to de-allocated database storage. We define stor-
age strategies of many relational databases, with in-depth
analysis of what happens “under the hood” of a database:

• We define similarities and differences in how different
databases handle deletion, explaining why deleted
values often remain recoverable for a long du-
ration of time.

• We also show how non-delete user actions create
deleted values in a database.

• We explain why databases create and keep many ad-
ditional copies of the data. Copies that are often
created without user’s knowledge and sometimes
without any human action at all.

• We demonstrate how to recover a surprising amount
of content from auxiliary structures used in databases.

• We prove the value of our tool, recovering nonex-
istent data (de-allocated and/or surviving past ex-
pectations) by testing DICE against many DBMSes.

This paper is structured as follows: Section 2 starts
with a review of different database storage elements and
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Parameter Type Parameter Postg
reS

QL

SQLite
Oracle

DB2
SQLServ

er

MySQL

Header
Unique Identifier Yes
Structure Identifier No Yes

Row Directory Sequence Top-to-bottom insertion Bottom-to-top insertion

Row Data

Row Delimiter No Yes
Row Identifier Yes No Yes
Column Count Yes No Yes No
Raw Data Delimiter Yes No

General
Percent Used No Yes No
File-Per-Object Storage Yes No Yes
Auto Row Reclamation No Yes No

Table 1: A list of some of the parameters used to parse a database page or to predict DBMS storage behavior.

the side-effects of caching, Section 3 deals with row recov-
ery, Section 4 addresses entire “lost” pages and Section 5
traces different places where table columns can hide.

A thorough evaluation with different DBMSes in Sec-
tion 6 shows what can be recovered. Our tests show that
DICE can recover 40-100% of deleted rows, 14% of rows
overwritten by updates, “invisible” column values in aux-
ilary structures, and 100% of canceled inserts. We believe
that the power of seeing forgotten or non-existent data
and transactions, and its potential role in investigation
of data-centric crimes, such as embezzlement and fraud,
is self-evident. For example, suppose that company X is
suspected of falsifying financial information in preparation
for an audit. Investigator Y is would want to determine if
some financial transactions in their Oracle database have
been deleted and, if so, restore the evidence of falsification.
Section 7 summarizes related work in the area and Section
8 points towards some of the promising future directions.

2. Background

2.1. Page Structure

Relational database pages share the same component
structure: the header, the row directory and the row data.
Other database-specific components also exist, e.g., Post-
greSQL pages have a “special space” for index access. The
page header stores variables such as unique page identifier
or structure identifier – this component is always located

•Page Header 
•Row Directory 

•Row Data 

•Other Structures 

Row4: 4, Mark, Boston 
Row3: 3, Mary, Dallas 
Row2: 2, Jane, Chicago 
Row1: 1, John, Boston 

Row1 Address 
Row2 Address 
Row3 Address 
Row4 Address 

*Table Data 
Tbl=Customer 

Free space, 
etc. 

20% 

80% 

Figure 1: An overview of database page structure.

at the beginning of the page. The row directory tracks in-
dividual row addresses within the page, maintained when
rows are modified. The row directory is positioned either
between the page header and the row data or at the end
of the page. Row data structure contains the actual page
content along with some additional overhead. Figure 1
shows how these structures interact within a page.

Some of the parameters used in this paper are sum-
marized in Table 1 for the six DBMSes used in Section
6. DICE supports many more databases – we only use
six different databases due to space considerations. All
databases use a unique page identifier, which distinguishes
page types. All databases except PostgreSQL store a struc-
ture identifier in the header, e.g., table supplier or an
IndexEmpID. Structure information can be recovered from
database system tables (see Section 4.2); PostgreSQL and
MySQL use a dedicated file for each database structure
and thus establish a more direct link between pages and
structure identifier.

PostgreSQL, SQLite, Oracle, and DB2 add row direc-
tory addresses from top to bottom, with row insertion from
bottom to top. SQL Server and MySQL instead add row
directory addresses from bottom to top, with row data ap-
pended from top to bottom. The order of adding newly
inserted rows can affect the order in which deleted val-
ues are overwritten. PostgreSQL, SQLite, SQL Server,
and MySQL create a row identifier – an internal column
created by the database that is sometimes accessible to
users. PostgreSQL, SQLite, Oracle, and SQL Server ex-
plicitly store the column count for each row, while DB2 and
MySQL do not. PostgreSQL, SQLite, Oracle, and MySQL
store the size of each string in the row. SQL Server and
DB2 instead create a column directory with pointers to
each string column. Oracle percent used parameter con-
trols page storage utilization – e.g., setting percent used
to 50% means that once a page is half-full, new inserts
will start replacing deleted rows. In other DBMSes, users
have less control over deleted data fragmentation in a page.
SQL Server and DB2 mitigate fragmentation by using spe-
cial storage to shuffle rows and accommodate newly in-
serted rows in a page (auto row reclamation in Table 1).
A more comprehensive list of parameters and a description
of how to reconstruct pages is described by Wagner et al.
[1].
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2.2. Database Storage Structures

Table. Each table in a database consists of a collection of
pages (as in Figure 1), with each page holding a subset of
table rows. The database catalog is stored in system tables
(similar to a regular table, Section 4.2). In most databases,
tables represent only a part of the database content.

Indexes. An index is an auxiliary structure that helps lo-
cate rows within a database table. For example, consider
a customer table from the SSBM [2] benchmark that is
sorted by customer ID. A query searching for a particu-
lar city (city = ‘Boston’) would scan the entire table,
but an index on city expedites the search by storing value-
pointer pairs (e.g., [Boston, Row#2], [Boston, Row#17],
[Chicago, Row#12]). Indexes are stored in pages that fol-
low the structure in Figure 1 (in many ways, an index is
a 2-column table), but some of the row metadata may be
omitted – e.g., indexes do not need to store number of
columns, since there are exactly two.

Database administrators (DBA) create indexes to tune
database performance, but we emphasize that many in-
dexes are created automatically. Some users know
that declaring a primary key constraint causes databases
to build an index, but few would know that so does the
creation of a UNIQUE constraint (e.g., SSN column).

Materialized views (MVs). MVs are pre-computed queries
– unlike views that are “memorized” but not physically
stored. For example, if SQL query SELECT * FROM Customer

WHERE City = ‘Boston’ is executed often, DBA may choose
to construct a BostonCustomers MV that pre-computes
the answer in order to speed up that query. MVs are not
created automatically, but some indirect actions can cause
MV to become materialized – e.g., indexing a view in SQL
Server makes it a materialized view.

Transactions and logs. Transactions help manage concur-
rent access to the database and can be used for recovery.
For example, if a customer transfers $10 from account
A ($50) to account B ($5), transactions are used to en-
sure that the transient account state (account A is already
at $40 but account B is still at $5) cannot be observed.
Should the transfer fail mid-flight (after subtracting $10
from A, but before adding $10 to B), transactional mecha-
nism will guarantee that account A is restored back to $50
to avoid an invalid state. Individual changes performed by
transactions are stored in the transactional log (e.g., <A,
$50, $40>, <B, $5, $15>), which can be used to undo or
reapply the changes, depending on whether the transac-
tion successfully executed COMMIT (i.e., was “finalized”).

2.3. Caching Behavior in Databases

DBMSes maintain a cached set of data pages in RAM
(buffer cache) to reduce disk access cost during query exe-
cution. However, when database users update tables (e.g.,
inserts or deletes), pages are modified in-place, creating
so-called dirty (modified from original) pages in memory.
The dirty page stored in memory replaces the old page on
disk only after it is evicted from cache.

Inserts, deletes and updates present opportunities for
recovering old, new or even tentative data – transactions
can be aborted and thus “undone”, but data content will
linger in storage. We discuss the recoverable artifacts for
a variety of different DBMSes in Sections 3 and 5.

The following sections define recoverable extraneous
data at different levels (rows, pages and values). All of
our analysis specifically addresses non-recoverable val-
ues, that cannot be directly accessed by the database users
or by third-party recovery tools (see Section 7).

3. The Life Cycle of a Row

Relational database store tables (relations) and there-
fore the smallest entity that can be deleted or inserted is
a row (tuple). An update changes specific columns, but
in practice updates will sometimes manipulate an entire
row (delete+insert) at the storage layer. In the rest of
this section we explain why data-altering operations leave
recoverable copies behind and how such data can be re-
stored.

3.1. Page Structure

Deleted rows can both be recovered and explicitly iden-
tified as “deleted” by DICE. In contrast, a discarded page
(see Section 4) looks like any other page and requires ad-
ditional steps to identify as “unused”. There are three
types of deleted row alterations that may be used by a
database: 1) the row header is updated, 2) the address in
row directory is deleted, 3) the metadata within the row
is modified.

Row header. Every database we investigated updates the
row header in the affected page. This helps us determine
when a page was last altered but not what specific data
was updated. For example, if the page header changes
compared to previous version, we know that the page was
altered at some point in-between – page checksum update
is one of the alteration causes.

Row directory. Only two databases, DB2 and SQL Server,
change the page row directory when a row is deleted. When
a row is deleted in SQL Server and DB2 the row directory
address is overwritten with a NULL value. SQL Server
overwrites each byte of an address with decimal value 0,
and DB2 overwrites each byte of an address with decimal
value 255. Deleted rows can be identified and restored
by searching for and parsing the row pattern between the
preceding and following valid row entries for each NULL
address in row directory. SQL Server and DB2 only use
the row directory to reflect the specific row that has been
deleted, and do not alter row metadata at all.

Row metadata. Oracle, PostgreSQL, SQLite, and MySQL
update row metadata to mark deleted rows. We found
that some of the same parameters for the row data in a
page can also be used to distinguish an active row from
a deleted row. We summarize our findings and parameter
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decimal values in Table 2. MySQL and Oracle mark the
row delimiter at the position stored in the row directory
address – a deleted row can be identified using Table 2
values. PostgreSQL marks the raw data delimiter, identi-
fying the start of individual values within the row. When
a row is deleted in PostgreSQL, the second byte of raw
data delimiter is updated to a new value. SQLite marks
the row identifier, a unique ID created by the database for
each row. In SQLite deleted rows all share a common row
identifier value allowing us to detect a deleted row.

DBMS Parameter Active Deleted
MySQL Row Delimiter 0 32
Oracle Row Delimiter 44 60
PostgreSQL Data Delimiter 2, 9, 24 2, x, 24
SQLite Row Identifier 4 uniq bytes 0,226,0,57

*This table excludes DB2 and SQL Server because these
DBMSes mark deletion in row directory but not in metadata.

Table 2: Row data parsing parameters used to identify deleted rows.

Figure 2 contains examples of what a deleted row looks
like in different DBMSes. In each example, the Row2 con-
taining (Customer2, Jane) has been deleted while Row1
and Row2 containing (Customer1, Joe) and (Customer3,
Jim) are active. The first example page shows how the
row delimiter is marked in a database such as MySQL or
Oracle, the second example page shows how the raw data
delimiter is marked in PostgreSQL, and the third example
show how the row identifier is marked in SQLite. Figure
2 omits DB2 and SQL Server as they only alter the row
directory on deletion.

3.2. Updated Rows

When a row is updated, it can be updated in-place (see
Section 5) or by a sequence of DELETE and INSERT. For all
of the databases we studied, when a row is updated to a
new row of equal or lesser size, old row storage is over-
written with new content (old value remainder can still be
recovered). When a row is updated to size greater than the
size of the old row, the old row is marked as deleted (same
as regular delete) and the new row is either appended to
the end of the table, or overwrites other deleted rows if an
empty slot is available (subject to exact DBMS policy).
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Figure 2: Examples of how deleted rows are marked in different
databases: 1) MySQL or Oracle 2) PostgreSQL 3) SQLite

Since the row is marked exactly like a regular delete, a
deleted row caused by an UPDATE operation and a deleted
row caused by a DELETE operation can’t be distinguished.

3.3. Transactional Effects

A transaction can fail because it conflicted with an-
other running transaction or because it was canceled. Failed
transactions are undone from user perspective but the page
storage is still altered in the database: 1) inserted row can
still be recovered from page storage (marked as deleted),
2) an old copy of the updated can be recovered from page
storage (looking similar to a deleted row) and 3) a deleted
row is reinserted to cancel out deletion. Thus, every possi-
ble canceled operation will leave recoverable rows in storage
– database logs could determine whether the “deleted” row
is actually a side-effect of INSERT or UPDATE.

4. The Life Cycle of a Page

4.1. Data Pages

In this section we discuss causes for de-allocation of
multiple pages. When a user drops a table, all pages be-
come unallocated – such pages are fully recoverable until
overwritten. Table deletion is only one of the operations
that de-allocate data pages. A more interesting example is
structure reorganization that compacts table storage (frag-
mented by deletion and other operations from Section 3).

Few databases (DB2 and PostgreSQL) permit explicit
reorganization of table storage. Oracle and SQLite require
that a new table be built to compact an existing table.
Both DB2 and SQL Server reclaim deleted tuple space
with new row inserts (auto row reclamation in Table 1).
However, SQL Server may require a cleantable command
to reclaim space wasted from a dropped column. MySQL
uses OPTIMIZE TABLE command, which is very similar
to the rebuild operation expected by Oracle and SQLite.

A DBMS may choose to perform a compacting opera-
tion automatically – DB2 even provides control over auto-
matic reorganization [3]. Rebuild operation (with or with-
out user’s knowledge) will typically leave behind recover-
able table pages just as the DROP TABLE command. Recov-
ering a discarded page is trivial for DICE (discarded and
active pages are usually identical), but to identify whether
a page is discarded we need to look at system tables.

4.2. System Tables

A deleted table page is not usually identified as deleted
in storage, unlike deleted rows which are explicitly marked.
In order to identify de-allocated (i.e., old) recovered pages,
we reconstruct the system table that stores table name and
structure (or object) identifier. Structure identifier is one
of the page parameters stored in the page header. Sys-
tem tables are typically stored in regular pages on disk,
but require additional parsing parameters and use differ-
ent existing parameter values for parsing. System tables
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may also contain unique data types that are not accessi-
ble to the user. Since determining the structure of system
tables and new datatypes with synthetic data may not be
feasible, manual analysis was typically performed to create
new parameters or parameter values.

In Oracle, system table page is similar to regular data
page and uses standard data types. When a table is dropped,
data pages are not altered, but the corresponding system
table row is marked as a regular deleted row. SQLite sys-
tem tables contain extra metadata within the row, but still
use standard data types. When a table is dropped, meta-
data in the row data is marked and the row header of the
first page that belongs to the table is marked.

PostgreSQL system table pages use regular structures,
but raw data delimiter (used to locate raw data, see Section
3.1) uses a different value. PostgreSQL system tables also
use several data types not available to the user. Some of
these data types are listed in Table 3. Object Identifier
(OID) is an object (or structure) identifier, and stored
like any other 4-byte number in PostgreSQL. The Name
data type stores object name string in a special reserved
64 byte slot. Aclitem is an array that stores user access
privileges. XID is a transaction identifier, also stored like
a 4-byte number in PostgreSQL. When a table is dropped,
the corresponding row in the system table is overwritten.
The single, dedicated data file for the table still exists, but
all references to database pages are removed and file size
is reduced to 0. Discarded pages from the dropped table
can still be recovered from unallocated file system storage.

Datatype Size Description
OID 4 bytes Identifier to represent objects.
Name 64 bytes Name of objects.
Aclitem Variable An array of access privileges.
XID 4 bytes Transaction identifier.

Table 3: MV refresh options for each database.

MySQL stores database catalog tables in RAM, and
no system table pages were found on disk. This is a direct
consequence of MySQL implementation – in addition to
the newer InnoDB [4], MySQL still uses an older MyISAM
[5] storage layer, which does not use pages (to our knowl-
edge MySQL is the only row-store database to do so and
MyISAM is being retired). DICE was built to parse pages
across different databases, and thus special-case parsing is
required for parts of MySQL stored in MyISAM. When a
MySQL table is dropped, the files containing table data
and metadata are deleted in file system. In DB2 there
were no notable differences between system table pages
and data pages, nor did we observe special data types in
DB2 system tables. When a DB2 table is deleted, data
pages are not changed but the corresponding system table
row is deleted (using same deletion mark as rows).

SQL Server was the only database to successfully hide
its system tables (so far). According to SQL Server doc-
umentation, system tables are not accessible to users but
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Figure 3: Example of how a deleted page is marked.

only to developers. We were not able to find where sys-
tem tables are stored, but we have ascertained that they
are not in the default instance storage. Table data pages
in SQL Server are not altered in any way when a table is
dropped (and thus can be recovered by DICE).

Figure 3 shows an example of how pages belonging to a
deleted table can be detected for databases such as Oracle,
PostgreSQL or SQLite that update system tables when a
table is dropped. In this figure, the row for the deleted ta-
ble is marked in the system table as previously described
for each database in Section 3. Table supplier has been
dropped while table customer remains active. The pages
for customer and supplier table use structure identifiers
125 and 126. In order to determine if these pages are
deleted or active, we check the relevant page of the cata-
log system table. This system page shows the row meta
data contains a deleted mark for the row with structure
identifier 126. The table catalog page also stores the table
name (supplier) for this deleted structure. This allows us
to identify all parsed pages with the structure identifier
126 as discarded pages belonging to the supplier table.

5. The Life Cycle of a Value

Database tables are stored and processed as a collec-
tion of individual rows that comprise them. In Section 4
we described scenarios where an entire table (or at least
a collection of pages) can be discarded by a single oper-
ation. We now discuss scenarios that create individual
de-allocated values (i.e., columns) in database storage.

5.1. Auxiliary Structure: Indexes

Section 2.2 defines a variety of common non-table struc-
tures that contain copies of data. When a row is deleted,
DBMS does not delete the corresponding index values –
nor are such index values marked deleted. Although in-
dexes were designed to be dynamically maintained [6], it is
easier to leave the index entry for a deleted row. For exam-
ple, if an employee is erased from a table, IndexEmployeeID

would keep this ID value, relying on row deletion mark to
ensure query correctness (i.e., queries should not access
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deleted employee records). This holds true for all table in-
dexes; such not-really-deleted values will exist in indexes
for a long time, either until the index is rebuilt or until
massive storage changes occur (see Experiment 3).

While deletion does not remove values from the index,
inserting a new row does create a value even if that in-
sert is canceled (i.e., transaction ABORT). The nature of
database transactions (Section 2.2) means that it is eas-
ier to include every possible value in the index and rely
on other metadata to determine if the row is relevant to
query lookup. Therefore every indexed value, including
never-inserted values will find its way into the index. Fig-
ure 4 contains one example: student records Carl and Greg
have been deleted (and marked as such), but the ID values
for these students (035 and 143) still persist in the index.

Row from an aborted insert is treated as if it were in-
serted and then deleted (transaction logs can differentiate
between the two options). An update that has been can-
celed would also be treated as a combination of an insert
and a delete. The pre-update value would be marked as
deleted (if the new value is larger and cannot change in-
place) and the post-update value of the canceled update
will be marked as deleted too.

5.2. Auxiliary Structure: Materialized Views

The amount of extraneous values in an MV depends on
update options configured for this MV (which, in turn, de-
pends by update settings available in a DBMS). There are
three types of MV refresh options that databases can offer:
1) use a custom refresh function, 2) refresh on each trans-
action commit, 3) refresh on demand. Table 4 summarizes
which refresh options are available for each database. A
custom refresh function can be created using trigger mech-
anism to refresh an MV based on certain events (e.g.,
UPDATE). Refresh on commit will refresh the MV when
a COMMIT is issued, reducing the maintenance overhead
somewhat. Refresh on demand refreshes the MV only
when manually requested (that is the cheapest option).

We discuss MVs in this section (dedicated to recover-
able values) because MVs have fewer columns compared to
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Figure 4: Example of how a deleted value can still live in an index.

DBMS Function Commit On Demand
DB2 3 3 3
MySQL 3 — 3
Oracle 3 3 3
PostgreSQL 3 — 3
SQLite 3 — 3
SQL Server* — — —

*Indexed views are immediately refreshed. The user can-
not change this setting.

Table 4: MV refresh options available in each database.

source tables and can include new pre-computed columns.
Even when an entire MV row is affected by data changes,
this row is still a subset of columns from the original table.
MV maintenance works similarly to table maintenance,
both support a rebuild directive.

When a row is deleted from a table, but the MV is
not refreshed, all table values stored in MV can still be
recovered from disk. Such old MV values may or may not
be accessible to the user (depending on database policies).
When an MV is refreshed, deleted data may either be over-
written by active data or marked as deleted (similar to
table rows). Note that SQLite, MySQL, and PostgreSQL
(prior to PostgreSQL 9.3) do not offer materialized views
– but since MV-like functionality is desirable, database
documentation recommends building a “derived” table in-
stead (CREATE NewTable AS SELECT...). In that case,
MV rows follow the same rules discussed in Sections 3 and
4 because this MV is really a table.

6. Experiments

Our current implementation of DICE forensic tool sup-
ports at least ten different RDBMS systems under both
Windows and Linux OS. We present results using six rep-
resentative databases (Oracle, SQL Server, PostgreSQL,
DB2, MySQL and SQLite) due to space limitations. Other
supported DBMSes are less widely used (e.g., Firebird and
ApacheDerby); yet others are supported by the virtue of
sharing the same storage layer: e.g., MariaDB (same as
MySQL) and Greenplum (same as PostgreSQL). Our ex-
periments were carried out on servers with Intel X3470
2.93 GHz processor and 8GB of RAM; Windows servers
run Windows Server 2008 R2 Enterprise SP1 and Linux
exeriments used CentOS 6.5. We either read the database
storage files or the raw hard drive image since DICE does
not rely on file system structure. Algorithm 1 describes
the overall parsing process. A file and a database param-
eter file are passed as an input. For every general page
identifier found in the image file, DICE records the the
page header and the row directory parameters. Next, a
list of addresses from the row directory are recorded. For
each row directory address, the row data parameters are
recorded, and the row is parsed. Page parameters and
a list of rows is recorded for each general page identifier.
Finally, the DICE parser returns the list of all pages.
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#1
DICE recovers 40-100% of the deleted rows
even after many inserts have been are executed.

#2
For up to 14% of updated rows, the full pre-
update version of the row can be recovered.

#3
In addition to #1/#2, old values are recovered
from active and deallocated index pages.

#4
Canceled transactions leave just as many recov-
erable values in storage as regular transactions.

#5
DICE can recover 0.5% deleted rows and dupli-
cate active rows after MV rebuild.

#6
Table rebuild leaves behind 1) 85% deleted rows
or 2) a large number of duplicate active rows.

Table 5: Summary of experimental results in this section.

Table 5 outlines the results for each of the experiments
presented here.

Algorithm 1 DICE Parsing Algorithm

Input: (Any image file, database parameter file)
1: for each GeneralPageIdentifier in imagefile do
2: set PageHeader and RowDirectory parameters
3: for each V alidAddress in RowDirectory do
4: append V alidAddress to Addresses
5: end for
6: for each Address in Addresses do
7: set RowParameters
8: Row ← ParseRowData()
9: append Row to RowList

10: end for
11: append (PageParameters,RowList) to PageList
12: end for
13: return PageList

Experiment 1: Recovering Deleted Rows. In this exper-
iment we demonstrate several properties of deleted row
storage behavior: 1) for any database, 100% of deleted
rows can be recovered immediately after deletion, 2) over
time, we can recover a significant chunk (40%) of deleted
rows from most databases and 100% of deleted rows from
Oracle, 3) given an atypical workload of deletes specifically
designed to be “easy to overwrite”, we can still recover
1% of deleted rows. Our experiments highlight the differ-
ence between deletes that result in high and low amount of
deleted row fragmentation. A sequential range of deleted
contiguously-stored rows is more likely to be replaced by
new data. Deleted rows that are scattered across pages
are less likely to be overwritten.

We use two databases with different row replacement
approach. SQL Server overwrites deleted rows once a row
of equal or lesser size is inserted into the table, possibly
doing some in-page defragmentation – Oracle will instead
wait until page utilization falls below a user-configurable
threshold (see Table 1, Oracle default threshold is 39%).

For both Oracle and SQL Server, we started with two dif-
ferent tables, each with 20K random sized rows. Both
databases used a page size of 8KB, and each page con-
tained approximately 85 rows resulting in table sizes of 236
pages. We deleted 1000 rows (more than one per page), in-
serted 1000 new rows of random size, and inserted another
1000 random rows. At each step we evaluated how many
deleted rows are recovered from disk. In table T1rand,
1000 deleted rows were randomly distributed across the
page storage, while in table T2cont 1000 deleted rows were
contiguous (i.e., delete all rows from just a few pages).

As Table 6 demonstrates, before new inserts come in,
all of the deleted rows can be recovered by DICE. None of
the deleted rows for T1rand in Oracle were overwritten by
inserts executed in hte next step. The default threshold in
Oracle is 39%, and we only deleted about 5% of the rows
in each page, leaving 95% intact. For T2cont in Oracle
all but 8 of the deleted rows were overwritten by the first
1000 new inserts (these 8 rows were still recoverable after
1000 more inserts). In T2cont deleted rows correspond to
wiping out 19 pages (0% utilization each) – the remaining
8 rows spilled into the 20th page with other active rows
with sufficiently high utilization (85%). In SQL Server
we saw that in both T1rand and T2cont first 1000 new
inserts overwrote 60% to 65% of de-allocated rows (due to
compaction applied by SQL Server). For the second 1000
inserts, T2cont replaced most of the deleted rows because
thye are contiguous and easy to overwrite. For T1rand,
only 20 additional rows were displaced by the second batch
of 1000 inserts because remaining T1rand are the smallest
surviving rows that are difficult to overwrite.

Oracle SQL Server

Action T1rand T2cont T1rand T2cont

Delete 1K Rows 1000 1000 1000 1000

Insert 1K Rows 1000 8 416 354

Insert 1K Rows 1000 8 394 12

Table 6: Number of deleted rows recovered by DICE.

Figure 5 shows how an inserted row may overwrite a
deleted row in SQL Server. (Supplier1, Bob) was initially
marked as deleted. On the left side we demonstrate insert-
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Figure 5: An example for row insertion behavior in SQL Server.

7



ing a new record (Supplier3, Ed). Since (Supplier3, Ed)
requires fewer bytes than (Supplier1, Bob), the inserted
row can overwrite the deleted row. Note that since the
inserted row is smaller than the original deleted row, frag-
ment of the old row, i.e., b, can be recovered from page
storage. On the right of Figure 5 we inserted the record
(Supplier3, Gregory). Since (Supplier3, Gregory) requires
more storage than (Supplier1, Bob), there is not enough
space to overwrite the deleted row. This forces the inserted
row to be appended to table page, leaving (Supplier1, Bob)
intact with a deletion mark

T1rand is far more representative of day to day database
use because it is hard to delete contiguously stored rows,
even on purpose. Row storage shifts over time and par-
ticular rows are unlikely to be co-located. Only a DBA
would know which rows are stored on the same page.

Experiment 2: Recovering Pre-Update Rows. In this ex-
periment we demonstrate that for a typical workload of
UPDATEs we can recover many old rows, although fewer
(5%-10%) compared to DELETEed row recovery in Experi-
ment 1. Fewer old rows can be recovered because while
updating values to a larger value results in DELETE +
INSERT, updating row to a smaller value overwrites the
old value in-place. We perform this experiment using DB2
(DB2 behaves similarly to SQL Server in that context) and
PostgreSQL. For each database, we started with two ta-
bles of 20K randomly sized rows and updated 1000 of the
rows to a new random row, followed by another 1000 ran-
dom updates for a total of 2000. 1000 updates in T1rand
were distributed across the table storage at random, while
1000 updates in T2cont updated a contiguously stored se-
quence of rows. Both DB2 and PostgreSQL compact page
contents to keep larger updated value on the same page.
However, if there is not enough free space available, the
new row is stored in a different page and the old value is
marked as deleted in the original page. New updates will
overwrite old deleted-by-update rows over time.

As Table 7 shows, for T1rand in DB2, we recovered 121
pre-update records after 1000 updates and 125 records af-
ter a total of 2000 updates were executed. Approximately
6% to 12% of old records remained recoverable due to the
way DB2 manages page storage. For T2cont in DB2, we
were only able to recover 6 old records after 1000 updates
and 10 old records after all 2000 updates were performed.
For T1rand in PostgreSQL, we recovered 137 values after
the first 1000 updates and 92 records after the second 1000
updates. For T2cont in PostgreSQL, we recovered a single
row, which was the last update in the sequence of 1000
updates. We have observed (as expected) that continu-
ous patch of deleted-by-update rows is overwritten by new
data quickly. The numbers in Table 7 only include fully
recoverable rows, ignoring some partial old values that can
be recovered as well (e.g., b example in Figure 5).

Experiment 3: Recovering Indexed Values. This experi-
ment demonstrates that DICE can recover thousands of

DB2 PostgreSQL

Upd. Rows T1rand T2cont T1rand T2cont

1000 121 6 137 1

2000 125 10 92 1

Table 7: Number of updated rows recovered.

old deleted or pre-update values (both from active and dis-
carded index pages) from an index structure in a database.
We used SQL Server and an index on region column for
SSBM Scale1 (=30K rows) customer table – in general,
indexes behave similarly across all DBMSes.

Region column has 5 distinct values, including ‘AMER-
ICA’, ‘ASIA’, and ‘EUROPE’, with roughly 6K records
for each (6K ∗ 5 = 30K). Table 8 summarizes recov-
ered value counts – each time a count changes, the cell
in Table 8 is highlighted with gray. We note that addi-
tional duplicate values were recovered based on the behav-
ior described in Section 5.1, but we do not include those
to avoid double-counting results. We first deleted 1000
rows from customer table with region value of ‘AMER-
ICA’. This resulted in deallocation of two index pages con-
taining ‘AMERICA’ that we recovered. Next, we updated
1000 rows in customer table with the value ‘AMERICA’
to the value ‘CAMELOT’ (not a real value for this bench-
mark). This action created new ‘CAMELOT’ values and
displaced more of the ‘AMERICA’ index pages.

We next deleted all of the rows with value ‘ASIA’, forc-
ing the index to deallocate 20 pages. All of the ‘ASIA’ re-
mained recoverable. We then updated all ‘EUROPE’ rows
to ‘ATLANTIS’ in the table. The index only grew by
5 pages, but the number of deallocated pages increased
by 18 pages. The number of recoverable ‘AMERICA’
and ‘ASIA’ values decreased after some deallocated pages
were overwritten. Finally, we updated all of the remain-
ing 16K original values in customer to a new value not in
this benchmark. And yet a significant fraction of ‘AMER-
ICA’, ‘ASIA’, and ‘EUROPE’ values were recovered – ei-
ther from active or from deallocated pages of the index.

Experiment 4: Aborted Transaction Effect. This experi-
ment proves that data inserted by aborted transactions is
fully recoverable by our tool, both from memory and disk,
just like regular deleted rows. We were also able to inde-
pendently recover these never-inserted values from indexes
that were attached to the table. We begun the experiment
by loading the supplier table from SSBM benchmark into
Oracle. We then inserted 1000 rows and issued an ABORT

command resulting in ROLLBACK. The data from canceled
inserts was cached, then marked as deleted and subse-
quently recovered from pages in memory. Once cache con-
tents were flushed, pages containing rows from the aborted
transaction were recovered from disk storage as well. One
might intuitively expect that in-memory cache of modified
pages would be simply discarded on ABORT – but all 1000
rows were appended at the end of the table on disk. We
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Action Index(Pg) Deallocated(Pg) Ameri
ca

Asia Europe

Camelo
t

Atla
ntis

Initial 115 0 5992 6051 5937 0 0
Delete 1K America Rows 113 2 5992 6051 5937 0 0
Update 1K America to Camelot 116 5 5992 6051 5937 1000 0
Delete All Asia Rows 96 25 5992 6051 5937 1000 0
Update All Europe to Atlantis 101 43 4692 5993 5937 1000 6167
Update Rem. 16K Rows 135 71 4687 1080 1419 1000 6167

Table 8: Life cycle of deleted and updated values in a SQL Server index.

have also found that the values from canceled inserts were
added to the supplier’s index.

Experiment 5: Materialized View Refresh. In this exper-
iment we show that: 1) we can recover all of the deleted
rows from an MV (in addition to recovering these deleted
rows from table storage, 2) after MV is refreshed we can
still recover 5% of the deleted rows from the MV, 3) the
refresh operation also generates extra copies of other, non-
deleted rows.We initialized this experiment with two MVs
containing 20K random sized rows and then deleted 1000
rows from the underlying tables. As in previous exper-
iments, for M1rand, 1000 deletes are applied to random
storage locations in the table and for M2cont table deletes
are applies in a contiguous fashion. Table 9 summarizes
the number of deleted rows and extra copies of active rows
(1100+ is not a typo – and duplicated rows do not inter-
sect with 1000 deleted rows) recovered from both MVs.

Before Refresh After Refresh
Row Type M1rand M2cont M1rand M2cont

Deleted 1000 1000 51 60
Duplicated 0 0 1107 1111

Table 9: The number of deleted rows and duplicate active rows re-
covered from disk storage after MV refresh in Oracle.

Before the refresh, we can recover every single one of
the 1000 deleted rows from the MV. This is independent of
rows recovered from table storage, such as in Experiment
1. After refresh, we found 51 “deleted” rows and 1107
duplicates of the active rows in M1rand. The duplicated
rows came in two flavors: 1) rows marked as deleted in
active pages (but not from the 1000 of user-deleted rows)
and 2) rows from de-allocated MV pages but not marked
as deleted and also not from any of the 1000 user-deleted
rows. Some rows were available from both sources, but our
results only count one recovered copy per row. Less than
10% of the duplicates were discovered in both sources and
these were eliminated from our counts. For M2cont, we
found 60 deleted values and recovered 1111 distinct active
rows from de-allocated storage. Similar recovery rates for
M1rand and M2cont were as expected, because rows are
being deleted from the original table, not from the MV
that is reconstructed by DICE.

Experiment 6: Table Rebuild. This last experiment demon-
strates in PostgreSQL that: 1) a table refresh following

typical workloads will leave only 1%+ of recoverable deleted
rows but more unrelated duplicate row copies, 2) a ta-
ble refresh that follows a continuous sequence of deletes
from that table will generate 85% of recoverable deleted
rows and few unrelated duplicate row copies. One way
or another table refresh leaves behind recoverable dupli-
cate rows, similar to MV refresh. PostgreSQL is the only
database where users have easy access to a manual defrag-
menting command – in other DBMSes, one typically has
to recreate the structure to compact storage. When build-
ing a brand new structure, old pages are even more likely
to be left behind, so PostgreSQL is chosen as the database
likely to leave the fewest discarded pages.

We created two tables with 20K random sized rows
and then deleted 1000 rows. 1000 rows deleted in T1rand
were distributed across the page storage and 1000 rows
deleted in T2cont were stored contiguously. Table 10 shows
the number of recovered deleted rows and duplicated ac-
tive rows. After a refresh of T1rand, we recovered 16
deleted rows and 1134 discarded copies of active rows.
Similarly to the previous experiment, 16 deleted recov-
ered rows were marked deleted, and 1134 duplicate values
were de-allocated without any markings – 16 deleted val-
ues were from 1000 deleted rows, but 1134 duplicates are
from the other 19,000 rows. For T2cont, we instead found
854 deleted rows and 182 duplicates of active rows on disk.

Before After
Row Type T1rand T2cont T1rand T2cont

Deleted 1000 1000 16 854
Duplicated 0 0 1134 182

Table 10: The number of deleted rows and duplicate active rows
recovered after a table rebuild in PostgreSQL.

Figure 6 illustrates why we recover so many duplicates
for T1rand but instead recover many more deleted values
for T2cont. PostgreSQL defragments rows within the page
when rebuilding tables, which results in different storage
allocation depending on whether deletes were randomly
scattered or contiguous before the rebuild. In Figure 6,
for sparsely deleted rows before rebuild, Row2 has been
marked as deleted in the row metadata. As the first page
in Figure 6 indicates, PostgreSQL does not alter the row
directory for deletion. After the table is rebuilt, Row3 is
moved to overwrite the deleted Row2 row, the old record
for Row3 is then marked “deleted” on the page, the row
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Figure 6: An example of how PostgreSQL reorganizes pages with
sparse or dense deletes during table rebuild.

directory address for Row3 is updated to reflect the new
location, and finally the row directory address for Row2 is
set to NULL (this NULL has nothing to do with deletion).
The result is a contiguous free space on the page between
the row directory and the row data – which also happens to
duplicate Row3 in storage, without user’s knowledge. For
the densely (contiguously) deleted rows in Figure 6 (3rd

page in figure), all rows on the page are marked as deleted.
When the table is rebuilt, the row directory addresses for
all deleted rows are set to NULL. Because there are no live
rows in this page, live rows are not duplicated as in the
sparse case, but marked-as-deleted rows are preserved on
the page (row directory NULLs are unrelated to deletion).

7. Related Work

Wagner et al. [1] introduced a database-agnostic mech-
anism to deconstruct database storage. That work de-
scribed database page structure with layout parameters
and performed a comparative study of multiple DBM-
Ses. This work extends deconstructions to the “unseen”
database storage, complementing recovery of regular table
content from deleted and corrupted database files. Drinkwa-
ter had studied carving data out of SQLite storage [7].
SQLite had been the focus of forensic analysis particularly
because it is used in Firefox [8] and in a number of mo-
bile device applications [9]. [10] investigated recovery of
deleted records from the Windows Search database.

OfficeRecovery provides a number of commercially sold
emergency recovery tools for corrupted DBMSes [11, 12,
13] that support several versions of each DBMS. OfficeRe-
covery products recover most of database objects (except
for constraints) – for Oracle that also includes backup file
recovery which is not something we currently support be-
cause our primary focus is on a universal multi-DBMS tool.
Percona Projects supplies a tool that recovers corrupted
or deleted tables in MySQL [14], but does not recover the
schema (and in fact requires that the user to provide the
descriptive data structure for the schema). Stellar Phoenix
sells DB2 recovery software for IBM DB2 (UDB) v8 [15]
as well as MS SQL Server for multiple versions [16].

Forensic data analysis in general is concerned with re-
covering partially damaged remnants of a file. Seminal

work by Garfinkel [17] discusses efficient file carving strate-
gies that rely on file content rather than metadata, in or-
der to restore files. Brown [18] presents a mechanism for
recovering a compressed file that includes a corrupted re-
gion. Similarly, research that concentrates on the analysis
of volatile memory looks for particular patterns in RAM.
Grover [19] describes a framework for identifying and cap-
turing data from an Android device in order to protect that
device from malware or investigate its owner. Volatile data
analysis also benefits from stochastic forensics defined by
Grier in [20], which derives probabilistic conclusions about
user actions based on side effects of these actions – in our
case we study side-effects of user and database actions.
Guido et al. [21] describes collecting data from a run-
ning Android device to identify patterns of malicious soft-
ware, identifying malicious applications without an apriori
known signature by observing system events in real-time.
Work in [22] presents a generalized process of performing
a version-agnostic Windows memory dump analysis. Sim-
ilarly, we generalize the process of database carving (disk
or RAM) across all DBMSes and operating systems.

Oliver [23] characterized the differences between File
System Forensics and Database Forensics, but did not im-
plement a database reconstruction tool. Adedayo [24] de-
scribed techniques for restoring database to an earlier ver-
sion using the database schema and log file records. This
requires a still-functional database, availability of the log
files and a valid schema. Our work reconstructs data at
the page level in database files without relying on any
of these assumptions. We capture the full state of the
database, including deleted data that has survived, rather
than restoring the accessible (visible) parts of the database
to an earlier version in time.

8. Conclusions and Future Work

In this work, we presented a tool that can recover data
that exists outside of forensic analyst’s field of view. Cur-
rent tools cannot recover deleted rows and yet this is where
we begin our analysis. We start with recovery of inaccessi-
ble rows and then move on to recovering database contents
that analysts do not know about. Few people know just
how much de-allocated storage is constantly being created
and shifted around in storage (on disk and in memory).

We also demonstrated why simple recovery of phan-
tom data is insufficient – to analyze the results, foren-
sic analyst must understand how database storage works.
There are changes that appear similar at a glance – e.g.,
both DELETE and UPDATE create a “deleted” row in storage.
Normal DBMS operation creates strange storage artifacts
– deleted or de-allocated page may be created through
simple internal maintenance (with no human action).

We intend to open-source our tool for the community,
after adding a number of other uses cases (beyond simple
recovery). We want to evaluate database RAM storage
changes in real-time, including non-page data content. We
plan to expand our work beyond row-store DBMSes (e.g.,
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columns-stores and key-value engines). Finally, it is our
goal to incorporate additional intelligence to help foren-
sic analysts present and explain digital evidence extracted
from database storage.
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