
PLI: Augmenting Live Databases with Custom Clustered Indexes
James Wagner, Alexander Rasin, Dai Hai Ton �at, Tanu Malik

School of Computing
DePaul University

Chicago, IL
{jwagne32,arasin,dtonthat,tanu}@cdm.depaul.edu

ABSTRACT
RDBMSes only support one clustered index per database table that
can speed up query processing. Database applications, that contin-
ually ingest large amounts of data, perceive slow query response
times to long downtimes, as the clustered index ordering must
be strictly maintained. In this paper, we show that application
slowdown or downtime, however, can o�en be avoided if data-
base systems expose the physical location of a�ributes that are
completely or approximately clustered.

Towards this, we propose PLI, a physical location index, con-
structed by determining the physical ordering of an a�ribute and
creating approximately sorted buckets that map physical ordering
with a�ribute values in a live database. To use a PLI incoming SQL
queries are simply rewri�en with physical ordering information
for that particular database. Experiments show queries with the
PLI index signi�cantly outperform queries using native unclustered
(secondary) indexes, while the index itself requires a much lower
maintenance overheads when compared to native clustered indexes.

CCS CONCEPTS
•Information systems→Record and block layout; Data scans;
•Computer systems organization→ Secondary storage organi-
zation;

KEYWORDS
Clustered index, Custom index, Block layout
ACM Reference format:
James Wagner, Alexander Rasin, Dai Hai Ton �at, Tanu Malik. 2017. PLI:
Augmenting Live Databases with Custom Clustered Indexes. In Proceedings
of ACM Scienti�c and Statistical Database Management (SSDBM) Conference,
Chicago, Illinois USA, June 27-29, 2017 (SSDBM ’17), 6 pages.
DOI: 10.1145/3085504.3085582

1 INTRODUCTION
Indexing is a primary technique in Relational Database Manage-
ment Systems (RDBMS) to logically order data. �erefore, it is a
key factor for scalable query processing. When the underlying data
is clustered in index order, query processing scales up. However,
in the absence of clustering a regular secondary index merely im-
proves search performance while potentially incurring random I/O

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SSDBM ’17, Chicago, Illinois USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5282-6/17/06. . . $15.00
DOI: 10.1145/3085504.3085582

for each page access. In the worst case for an indexed query predi-
cate on an unclustered index, a cost-based optimizer may resort to
full sequential table scan for query selectivity as low as 0.01 (1%).

It is well recognized that moving object or sensor data ware-
houses that continually ingest data, which requires clustered and
unclustered indexes to support analytical workloads, face query
response time degradation due to indices becoming severely un-
clustered, i.e., incurring random I/O on each disk access. It is not
uncommon for a database warehouse to undertake a downtime to
recluster the entire data and improve performance.

However, such slowdowns due to random disk I/O can be reduced
if the database shares some information of the physical location of
a�ributes on a disk. We illustrate this reduction through an example
in Figure 1. Consider Table T in Figure 1 with a�ributes {ID, Name}.
�e table is physically clustered on a�ribute {ID} into seven pages,
i.e., the pages are in sequential order on the disk. �e table also
records the physical location of each row which is marked with
an internal {RowID} column. Clustering this column on {ID} will
sort the a�ribute {ID} and physically cluster the sorted result. Note
that in order to minimize maintenance costs, the clustering on {ID}
in Figure 1 example is not strict but rather approximate. Consider
a query that accesses values based on ID BETWEEN #1 and #6.
�e secondary index will look up the matching keys, reading a
number of index pages (intermediate levels) and two pages from
leaf level of the index (incurring several seeks before accessing the
table itself). First three pointers (Row1, Row3, Row2) will access
the �rst page, which will be cached a�er the Row1 lookup. Fourth
match (Row19) will require a seek and a read of a seventh page at
the end. Finally, ��h and sixth match will correspond to pointers
(Row4, Row5) causing yet another seek and reading of the second
page in the table. A more e�cient access path would recognize that
�ve out of six matched values are in fact co-clustered in �rst two
pages, with one outlier (#4) that resides in the over�ow page and
avoid seeking back and forth.

�e only way to take advantage of this seek reduction is by
determining the level of physical co-clustering within a�ribute
{ID}, an information which is maximally available through the
RowID column of the table. �us for instance, if the database was
indexed on RowID, with each range of RowID values consisting
of six table rows, then such an index will quickly determine the
physical co-clustering and lead to two seeks instead of three seeks.
In general, the di�erence can be much larger. �e sparse index on
the right of table T illustrates that fewer seeks are possible with
physical clustering.

To create an index based on physical location ordering of data
rows, one must precisely determine the physical location, i.e., the
values of the RowID column. While this internal column maps the
queryable tuple to the physical location on the disk, commercial

SSDBM ’17, June 27-29, 2017, Chicago, Illinois USA J. Wagner et al.

 Row1: #1, Eric, …
 Row2: #3, Jane, …
 Row3: #2, Mark, …

 Row4: #4, Ana, …
 Row5: #6, John, …
 Row6: #10, Jon, …

 Row7: #7, Pat, …
 Row8: #9, Liam, …
 Row9: #8, Jack, …

 Row10: #11, Rick, …
 Row11: #14, May, …
 Row12: #12, Pete, …

 Row13: #17, Lear, …
 Row14: #16, Jay, …
 Row15: #15, Alex, …

 Row19: #5, Tanu, …
 Row20: #13, Hai, …

 #1: Row1
 #2: Row3
 #3: Row2
 #4: Row19
 #5: Row4

Secondary Index
(native index is

dense and
expensive to

maintain)

 Row16: #22, Iyad, …
 Row17: #19, Marc, …
 Row18: #18, Sam, …

 #6: Row5
 #7: Row7
 #8: Row9
 #9: Row8
 #10: Row6
 #11: Row10
 #12: Row12
 #13: Row20
 #14: Row11
 #15: Row15
 #16: Row14
 #17: Row13
 #18: Row18
 #19: Row17
 #22: Row16

 Bucket1: Row1
 Vals: [1 -- 10]
 Bucket2: Row7
 Vals: [7 -- 14]
 Bucket3: Row13
 Vals: [15 -- 22]
 BktOvrflow: Row19
 Vals: [5 -- 13]

PLI Index
(approximate,

sparse & cheap
to maintain)

Index Organized Table
(native index is dense, clustered
and very expensive to maintain)

Oracle IOT is 4X-6X times bigger
compared to the original table

 #1: Row1: #1, Eric, …
 #2: Row2: #2, Mark, …

Leaf
Nodes

 #9: Row9: #9, Liam, …
#10: Row10: #10, Jon, …

 #19: Row19: #19, Marc, …
 #22: Row22: #22, Iyad, …

The data is stored in
BTree leaves

(not in a table as above)

Attribute-
based PLI

(id)
4 index

records for
20 rows

 Bucket1: Row1
 Vals: [0 -- 3]
 Bucket2: Row7
 Vals: [2 -- 5]
 Bucket3: Row13
 Vals: [4 -- 7]
 Ovrflow: Row19
 Vals: [1 -- 4]

Expression-based
PLI

(
𝒊𝒅 −𝟏

𝟑
)

Custom
expression, same
4-bucket mapping

Figure 1: Storage layout of PLI and native database indexes (secondary and index-organized).

databases, due to physical-logical independence do not provide this
information transparently. In fact, while the physical location of a
row can be determined through a SQL query (e.g., SELECT ROWID
in Oracle) , given two physical locations, there is no SQL query that
determines if the two physical locations are strictly ordered on disk.
Ordering a table on the internal RowID a�ribute, and inserting the
result into a new table will also not guarantee that the resulting
table is strictly ordered. To obtain the precise physical locations
of the table rows in this paper we use a forensic tool that can read
most commercial database storage �les and output rows as they
are physically ordered on disk for each table.

We describe a bucket based mechanism that exploits the approx-
imate sorting inherent to Table T in Figure 1. Instead of traditional
index that maps one value to one storage location (e.g., {ID}=3 to
Row2 pointer) PLI utilizes range-of-values to range-of-addresses
mapping. In our example, there is no entry for {ID}=3 speci�cally;
instead, there is Bucket1 that represents a value range [1–10] (min
and max for {ID}) which is mapped to a storage location range
(in our example, Bucket1 corresponds to a physical pointer range
of [Row1–Row6]). What Bucket1 tells us is that physical address
range [Row1–Row6], which corresponds to �rst two pages, con-
tains only values between 1 and 10. �e index enables us to include

(or exclude) this particular bucket without knowing the exact set
of values or their speci�c ordering within the bucket.

Bucket mapped index has signi�cant advantages over a typi-
cal secondary index. First, it provides the advantages inherent
to a sparse index. �at is, it requires one record per bucket (in-
stead of one record per row) and is easier to maintain and use for
lookup. Furthermore, bucket ranges de�ned in terms of RowID can
be externally used in any database that exposes RowID values. �is
approach can be e�ectively generalized to multiple databases and
a�ached to a live DBMS. Second, the value range associated with
each bucket makes it easy to build expression-based variations of
the same structure. For example, in Figure 1 we have a second PLI

structure constructed on ID−1
3 rather than ID. �e only change

that such structure requires is re-mapping the value ranges (e.g.,
Bucket1 [1–10] becomes Bucket1 [0–3]) and the new PLI can be
used on matching expression. �is is far easier for order-preserving
functions and we plan to explore other mappings and e�ects of
inter-column correlation.

Our experiments show that a live database can be augmented
with PLI using existing RowID and achieving query performance
competitive to that of a native clustered index (or even exceed
native performance because clustered indexes are not implemented

PLI: Augmenting Live Databases with Custom Clustered Indexes SSDBM ’17, June 27-29, 2017, Chicago, Illinois USA

to act as a true sparse index). Furthermore, PLI is also associated
with surprisingly low overhead and higher tolerance to storage
fragmentation (due to inserts) because of its sparse nature and
approximate (rather than strict) ordering.

2 RELATEDWORK
Some DBMSes (e.g., Oracle and MySQL) implement an Index Or-
ganized Table (IOT) as a replacement for clustered table. Figure 1
includes an example of IOT compared to a clustered index or PLI.
While a traditional clustered index is still an additional structure
that happens to be aligned with the sorting order of the table (table
and index are two distinct structures), IOT is a merged structure
with rows of the table spliced into the leaf nodes of the index itself.
IOTs do achieve clustering (textbook de�nition) in that the table
data is now kept sorted as new rows are inserted. However, this
solution comes at a price. �e leaves of the BTree data structure
are logically sorted forming a linked list (each leaf node points to
the next sibling). However, such linked list is not guaranteed to
maintain a physical ordering as a clustered table usually does. Fur-
thermore, even if a physical ordering of index leaves exists initially,
BTree maintenance algorithm cannot maintain such continuity as
the tree splits and merges (nor is this the goal of BTree structure).

Kimura et al. proposed dividing a table into buckets as a scan
unit with correlation maps (CMs) index [3]. Using buckets to scan a
table allows for a compressed index structure, but can result in false
positives. A compressed index structure can be cached, reducing I/O
operations for index maintenance just like PLI. Similar to CMs, our
method records the ranges of values stored for each bucket. Unlike
CMs, our method only requires access to internal row identi�er
– while CMs require a built-in clustered index to operate. As we
show in our experiments, built-in clustered index has some practical
(database-speci�c) limitations.

Generalized partial indexing builds unclustered indexes around
records de�ned by the user, leaving some records not indexed [5].
A physical location index is similar in that the user de�nes which
sections, i.e. buckets, of the table to reorder possibly leaving some
buckets unordered. However, PLI provide the bene�t of indexing
to most records, and approximately sorts data across buckets. In
both methods, index maintenance cost is reduced by only recording
access or reorganizing data that bene�ts queries.

Database cracking expands on generalized partial indexing by
reorganizing a cracker index in pieces accessed by queries [2]. Our
work allows the user to reorganize data across units of buckets,
where the size of the bucket is determined by the user instead of a
query. Similar to database cracking, data is only organized across,
not within, a piece or bucket. �e major di�erence between the two
is that database cracking requires signi�cant rewrite of the DBMS
engine, while we add PLI to a live database.

Cheng et al. implements predicate introduction to improve query
performance [1]. Predicate introduction can be used to improve
a query by accessing a column with an index, or by reducing the
tuples scanned for a join. Instead of rewriting queries based on
structures created by the user, our work rewrites queries with
constraints on the database internal row identi�er in the WHERE
clause of the query. Since the row identi�er is typically used to

Parameter
Detector

DB Carver

Iteratively load
synthetic data

Capture DB storage

Config. files

Generate
DB config.

DBMS disk

DBMS RAM

 Deleted/updated rows

Cached data pages

Catalog, logs, etc

Unallocated pages

A
B

C

D

E
F

G

Figure 2: Architecture of DBCarver.

access rows when a full table scan is not used, there is no bene�t
to using user created structures.

2.1 DBCarver
In this section, we describe the general implementation of database
page carving with DBCarver [6]. Figure 2 shows the overall archi-
tecture of DBCarver. DBCarver consists of two main components:
the parameter detector(A) and the carver(F).

�e parameter detector calibrates DBCarver for the identi�ca-
tion and reconstruction of di�erent pages. To do this, the parameter
detector loads synthetic data(B) into a working version of the par-
ticular DBMS, and it captures underlying storage(C). �e parameter
detector then learns the layout of the database pages, and describes
this layout with a set of parameters, which are wri�en to a con-
�guration �le(E). For example, the parameter detector records the
location of row directory, the endianness of addresses, and the size
of each address (typically a 16-bit number) as parameters in the
con�guration �le. A con�guration �le only needs to be generated
once for each speci�c DBMS and version, and it is likely that a
con�guration �le will work for multiple DBMS versions as page
layout is rarely changed between versions.

DBCarver has been tested against ten di�erent databases: Post-
greSQL, Oracle, SQLite, DB2, SQL Server, MySQL, Apache Derby,
Firebird, Maria DB, and Greenplum. It can parse disk storage and
describe the exact physical layout (based on disk address) of each
database table.

3 HOW TO BUILD A CUSTOM CLUSTERED
INDEX

To create a database-independent clustered in a DBMS, we augment
the DBMS with a module that consists of a sparse index structure,
a maintenance component and an automated SQL query re-writer.
Section 4 presents results using a PostgreSQL and Oracle DBMSes.

3.1 Architecture
�e architecture of PLI operation is shown in Figure 3. We rely on
the native database table(A) with no modi�cations or assumptions
about DBMS engine features (e.g., DBMS may not even support
clustering). Initially, we use DBCarver to inspect table layout as it
currently exists. As shown in [6], looking for speci�c pages in a
table is orders of magnitude faster compared to full reconstruction
of disk image. If the table is su�ciently (approximately) organized
in the desired fashion and can be represented as a sequence of

SSDBM ’17, June 27-29, 2017, Chicago, Illinois USA J. Wagner et al.

DB Carver

(optionally)
Reorganize
data

Construct PLI

Inspect
storage

DBMS
Table

DBMS

A

B

C

D

E

F

G

Bucketed PLI
Bucket1: [v1:v2]=> Ptr1
Bucket2: [v3:v4]=> Ptr2

DELETE
UPDATE
INSERT

Update PLI

SELECT *
FROM T1
WHERE C1 < v2

Rewrite
SQL

SELECT *
FROM T1
WHERE C1 < v2

AND RowID < Ptr2

Figure 3: Architecture of PLI.

bucket ranges (e.g., �rst 10 pages contain function values [0 – 10],
next 10 pages contain function values [9 – 12], etc.), then PLI can
be built immediately; otherwise, we need to reorganize the table
(by creating a replacement table with custom ORDER BY clause).
Note that any sorting function supported by DBMS can be chosen
(e.g., income-expenses or

√
income). �e PLI structure is then

constructed(D) as a substitute for the native DBMS index – Figure 1
outlines di�erent index choices. PLI is orders of magnitude cheaper
to maintain when compared to a regular index for two reasons: 1)
PLI is sparse and thus very small, and 2) PLI does not need to track
DELETE operations (we explain why in this section). Finally, in order
to query with PLI, we use a simple query rewrite process(G) that
occurs outside of the database. An incoming query is augmented
to include a predicate on database-speci�c implementation of the
RowID to instruct the DBMS engine which pages to read. �e rest
of this section discusses creation and use of PLI in more detail.

3.2 Initial Setup
�e �rst step in using PLI is to inspect the table and organize it
(if necessary) according to the desired access pa�ern. Note that
reorganization refers the table data itself not to creation of an ad-
ditional index. Secondary index does not permit sequential access
and introduces signi�cant overhead in addition to the original table.
Databases clustering functionality is severely restricted in prac-
tice (e.g., in many DBMSes clustering index key must be unique).
Despite the fact that sparse access is the distinguishing feature of
clustering indexes, they are never truly sparse (e.g., using only 1
index entry per 80 rows on a page) when used in practice.

If the table is not already sorted as we prefer, we impose the
ordering by recreating that table structure. In either case we discard
the existing secondary index (as PLI will replace it). Database user
can choose arbitrary ordering that need not be unique or strict; any
function or rule supported by ORDER BY clause would be acceptable.
To order table T on function of columns (A-C), we create a new
structure as CREATE TABLE T PLI AS SELECT * FROM T ORDER
BY (A-C). �is new table structure replaces the original table and
requires very li�le maintenance from the host DBMS (since new
rows can be appended at the end of the table).

Once the sorted table is created, we use DBCarver to validate
table’s storage sorting at the physical level. �e table is likely to be
sorted (or at least mostly-sorted) as the ORDER BY clause speci�ed
as non-clustered tables are generally stored in order of insertion.

However, although such sorting is not guaranteed – in practice,
new table may be stored di�erently on disk (most notably in Oracle).
Using the underlying sorting, we next generate a bucket mapping
structure, recording RowID boundaries for each bucket.

3.3 PLI Structure and Maintenance
�e structure of PLI is similar to that of a traditional sparse primary
index. A regular sparse index will direct access to the correct page
or sequence of pages instead of referencing particular rows. For
example, in Figure 1, PLI consists of 3 buckets of approximately
sorted data and an over�ow bucket for a total of 20 rows in the
table. Instead of storing 20 index entries, PLI only contains 4; the
�rst bucket covers �rst two pages with six rows – PLI structure
knows that all indexed values in that range are between #1 and
#10 (without knowing the exact order) and can direct the query
to scan this range if the predicate matches. �e following two
pages belong to bucket two which includes range between #7 to
#14; note that approximate nature of sorting can result in overlap
between buckets, e.g., PLI does not know whether #8 is in the �rst
or second bucket and will direct the query to scan both buckets
for this value. �us, PLI can conceptually tolerate any amount
of out-of-orderness, but performance will deteriorate accordingly.
In addition to the indexed buckets, we also include the over�ow
bucket (values [5–13]) which contains recent inserts.

We next discuss maintenance costs. Interestingly, PLI’s approach
requires no maintenance for deletes. Sparse bucket-based indexing
knowingly permits false-positive matches that will be �ltered out
by the query a�er I/O was performed. �erefore, the index does
not change when rows are deleted (e.g., in Figure 1, deletion of #6
will not change the �rst bucket in any way). Update queries can
be viewed as DELETE + INSERT, permi�ing us to treat updates as
insert as well.

A new insert would typically be appended at the end of table
storage, unless there is unallocated space on one of the existing
pages and the database is willing to make in-place overwrite (Oracle
has a se�ing to control page utilization, while PostgreSQL avoids
in-place overwrite inserts). If the insert is appended, the over�ow
bucket needs to be updated only if the range of values in the bucket
changes. For example, in Figure 1 over�ow bucket is [5–13] and
thus does not need to be changed when #10 is inserted into over�ow.

�ere are several ways to determine the location of the newly in-
serted row to update PLI (RowID is the internal database identi�er
that re�ects location of the row). Our current prototype queries
the DBMS for it (SELECT CTID in PostgreSQL or SELECT ROWID
in Oracle). However, for bulk inserts it we can also use DBCarver
to inspect the storage and determine the RowID ourselves. �e
new insert may overwrite a previously deleted row at any position
(as we are avoiding maintenance overheads of clustering), which
could potentially widen range of values in that bucket creating
more false-positives. �e degradation is gradual, but eventually the
table will need to be reorganized. �e comparison of di�erent reor-
ganization algorithms is beyond the scope of this paper, but storage
reorganization can be done by targeting speci�c rows (executing
commands that will cause out-of-order rows to be re-appended) or
by resorting the whole table.

PLI: Augmenting Live Databases with Custom Clustered Indexes SSDBM ’17, June 27-29, 2017, Chicago, Illinois USA

�e storage size and the cost to maintain the PLI structure is
proportional to the number of buckets that it uses. We have ex-
perimented with di�erent granularities and bucket sizes – and, in
practice, having a bucket of fewer than 12 disk pages does not im-
prove query performance. Assuming about 80 rows per page, PLI
structure only needs one bucket per one thousand (1000) rows. A
structure of this size can be kept in RAM and used or maintained
at a negligible overhead cost.

3.4 �ery rewrite
In order to use PLI index, incoming SQL queries are rewri�en to
take full advantage of the current layout of the table. Additional
PLI-based predicates are added to the query to restrict the disk
scan range; bucket-based indexing is approximate by nature and
provides a superset range within which data of interested resides.
For example, consider Figure 1 – a query predicate id BETWEEN
#1 AND #6 is rewri�en into id BETWEEN #1 AND #6 AND (CTID
BETWEEN Row1 and Row6) AND (CTID BETWEEN Row19 and
Row20). In Oracle ROWID will be used instead of CTID in Post-
greSQL. �e �rst added condition matches the range of buckets
(in that case the �rst bucket from PLI) and the second condition
corresponds to the over�ow bucket. �is access range results in
a more e�cient pa�ern of disk reading by minimizing seeks and
by removing the overhead of secondary index use. While this PLI
condition does include false-positives (speci�cally, id #10 at Row6
and #13 at Row20), the original query predicate (id BETWEEN #1
AND #6) will elminate false positives.

4 EXPERIMENTS
Due to limitations of available user access to the database-internal
RowID a�ribute, our experiments were limited to two databases,
PostgreSQL and Oracle. We used data from the Uni�ed New York
City Taxi Data Set [4]. �e experiments reported here were per-
formed on servers with an Intel X3470 2.93 GHz processor and
8GB of RAM running Windows Server 2008 R2 Enterprise SP1 or
CentOS 6.5.

4.1 Experiment 1: Regular Clustering
�e objective of this experiment is to compare the performance
of a table with a native clustered index and a table with a PLI. In
Part-A, we collected query runtimes using a predicate on the sorted
a�ribute. In Part-B, we compare the time to batch insert data into
each table. In Part-C, we repeat the queries from Part-A.

Part A. We began with 16M rows (2.5GB) from the Green Trips
table sorted by the Trip Distance column. For each DBMS, we cre-
ated one table that implemented the native clustering technique and
another table that implemented PLI. Since an Oracle IOT can only
be organized by the primary key, we prepended the Trip Distance
column to the original primary key. We then ran three queries,
which performed sequential range scans, with selectivities of 0.10,
0.20, and 0.30.

Table 1 summarizes the runtimes, which are normalized with
respect to a full table scan (i.e., 100% is the cost of scanning the
table without using the index). Since our goal is to evaluate a
generalized database approach, the absolute time of a table scan
is irrelevant; we are concerned with the runtime improvement

resulting from indexing. In PostgreSQL, both approaches exhibited
comparable performance, a few percent slower than the optimal
runtime (e.g., for 0.20 selectivity the optimal runtime would be
20% of the full table scan). PLI remained competitive with native
PostgreSQL clustering – the slight edge in PLI performance is due to
not having the overhead of accessing the secondary index structure.
PostgreSQL has to read the index and the table, while PLI access
only reads the table (PLI structure itself is negligible in size). In
Oracle, PLI signi�cantly outperformed the IOT for the range scans.
�e queries that used a PLIwere about three times faster than those
that used an IOT. Oracle performance is impacted by lower average
page utilization (and unused space) in the nodes of the IOT B-Tree.

�ery Selectivity
DBMS Index Type 0.10 0.20 0.30

PostgreSQL Clustered 15% 26% 38%
PLI 13% 25% 36%

Oracle Clustered 31% 57% 86%
PLI 12% 21% 32%

Table 1: �ery runtimes as percent of a full table scan (clus-
tered on attribute vs PLI).

Part B. Next, we bulk loaded 1.6m additional rows (250MB or 10%
of the table) into each Green Trips from Part-A. In PostgreSQL, the
records were loaded in 263 seconds for the table that implemented
native clustering and 62 seconds for the table that implemented a
PLI. Clustering is a one-time operation in PostgreSQL and ordering
is not maintained as inserts are performed. �erefore, the observed
overhead was primarily associated with the clustered index itself. A
PLI does not have a signi�cant maintenance cost due to its sparse
and approximate nature. In Oracle, the records were loaded in 713
seconds for the IOT, and 390 seconds for the table that implemented
a PLI. Since IOT used a B-Tree to order records, the observed high
overhead was caused by maintenance of the B-Tree as new records
were inserted.

�ery Selectivity
DBMS Index Type 0.10 0.20 0.30

PostgreSQL Clustered 90% 115% 139%
PLI 23% 31% 44%

Oracle Clustered 123% 238% 347%
PLI 20% 31% 40%

Table 2: �ery runtimes as percent of a full table scan (clus-
tered on attribute vs PLI a�er bulk insert).

Part C. To evaluate the maintenance approach for each index,
we re-ran the queries from Part-A. Table 2 summarizes the resulting
runtimes. For both DBMSes, the queries that used a PLI incurred a
penalty of 10% or less compared to Part-A, which is consistent with
Part-B inserting 10% worth of new rows. All newly inserted records
were appended to the end of the table and were therefore incor-
porated into the over�ow bucket (requiring minimal maintenance
in the process and causing limited query performance deteriora-
tion). In PostgreSQL, the queries using the native clustered index
slowed down by a factor of about 4 due to the interleaving seeks
ine�ciency discussed in Section 1. In Oracle, the queries using
native clustering also slowed down by a factor of about 4, albeit

SSDBM ’17, June 27-29, 2017, Chicago, Illinois USA J. Wagner et al.

for a di�erent reason. While the IOT maintains logically sorted
records within the leaf node pages, these leaf node pages are not
necessarily ordered on disk during B-Tree re-organization resulting
in an increased number of seeks for the queries.

4.2 Experiment 2: Expression Clustering
�e objective of this experiment is to expand upon Experiment 1 by
evaluating an expression-based (rather than a�ribute-based) index
to demonstrate the extendability and �exibility of the PLI approach.
In Part-A, we collected query runtimes using a predicate on the
sorted a�ribute. In Part-B, we compare the time to batch insert data
into each table. In Part-C, we re-run the same queries from Part-A.

Part A. We began with 16M rows (2.5GB) from the Green Trips

table, and we sorted the table on T ip Amount
T r ip Distance function (i.e., tip-

per-mile for each trip as our order-preserving function). For each
DBMS, we created one table that implemented the native clustering
technique and another table that implemented PLI. As Oracle does
not support function-based indexes, we created a computed column,
and prepended this computed column to the primary key so an
IOT could be built. We then ran three queries, which performed
sequential range scans with selectivities of 0.10, 0.20, and 0.30.

Table 3 summarizes the runtimes, which are again normalized
with respect to full table scan. �ese baseline performance results
are very similar the result from Experiment 1: Part-A demonstrating
that query access for the function based index does not impose a
signi�cant penalty for any of the approaches. �e runtimes for the
Oracle IOT were slightly higher, which we believe were caused by
additional storage space used by the computed column.

�ery Selectivity
DBMS Index Type 0.10 0.20 0.30

PostgreSQL Clustered 13% 25% 37%
PLI 15% 25% 37%

Oracle Clustered 30% 62% 100%
PLI 11% 21% 32%

Table 3: �ery runtimes as percent of a full table scan (clus-
tered on expression-based index vs PLI).

Part B. Next, we bulk loaded 1.6m additional rows (250MB or
10% of the table) into each Green Trips from Part-A. For the Oracle
IOT containing the computed column, we previously generated
the value, and we stored it in the raw data �le. In PostgreSQL, the
records were loaded in 917 seconds for the table that implemented
native clustering, and 70 seconds for the table that implemented a
PLI. �is demonstrates that a traditional expression-based index
is far more expensive to maintain than a regular index, producing
much higher overheads. PLI requires very minimal maintenance
– same as in Experiment 1, without an expression-based cluster-
ing. �e insert cost into the table itself is using append and is thus
comparable for both. In Oracle, the records were loaded in 1527
seconds for the IOT, and 408 seconds for the table that implemented
a PLI. �is drastic overhead increase in the time to load the data
(compared to Experiment 1: Part-B) can be explained by data dis-
tributed. �e data in Experiment 1 was more uniform requiring
less B-Tree rebuilding, while computed ordering was much more
sca�ered resulting in more B-Tree restructuring.

Part C. To evaluate the maintenance penalties for each index, we
re-ran the queries from Part-A as summarized in Table 4. Just as in
Experiment 1, the queries that used PLI increased in cost by about
10% of a full table scan – as expected because inserted records were
appended to the over�ow bucket causing queries to scan additional
10% of over�ow data. In PostgreSQL, the runtimes for the native
expression-based clustered index increased by about a factor of
3 due to interleaving seeks as in Experiment 1. Interestingly, the
penalty caused by computed index and storage fragmentation was
not nearly as signi�cant as regular built-in clustered index. We
expect that PostgreSQLmakes some additional e�ort to mitigate the
overhead of interleaving seeks when utilizing an expression-based
clustered index. In Oracle, the queries using the IOT increased by
a factor of about 7, which is signi�cantly more than Experiment
1: Part-C. �is di�erence can be a�ributed to a greater amount of
fragmentation caused by the B-Tree restructuring in Part-B.

�ery Selectivity
DBMS Index Type 0.10 0.20 0.30

PostgreSQL Clustered 52% 79% 93%
PLI 22% 31% 44%

Oracle Clustered 259% 461% 706%
PLI 19% 30% 40%

Table 4: �ery runtimes as percent of a full table scan (clus-
tered on expression-based vs PLI a�er bulk insert).

5 CONCLUSION
We have presented PLI – a generalized clustered indexing approach
that can be added to a live relational database using rowid column.
�is indexing approach uses a bucket-based sparse indexing struc-
ture, which results in a very lightweight and easy-to-maintain
index. �e sparse pointers into the table can easily tolerate approxi-
mate clustering (i.e., reordering within the bucket is irrelevant) and
trivially allows PLI variations to use an expression-based index
to match query predicate. DBMSes could expose rowid column
further to make custom clustered index creation simple for the
user – or this approach can be used to create a generation of be�er
clustered indexes inside the database engine, as existing engines do
not implement true (i.e., textbook-like) sparse clustering indexes.

ACKNOWLEDGMENTS
�is work was partially funded by the US National Science Founda-
tion Grant CNF-1656268.

REFERENCES
[1] Qi Cheng, Jarek Gryz, Fred Koo, TY Cli� Leung, Linqi Liu, Xiaoyan Qian, and

Bernhard Schiefer. 1999. Implementation of two semantic query optimization
techniques in DB2 universal database. In VLDB, Vol. 99. 687–698.

[2] Martin L Kersten, Stefan Manegold, and others. 2005. Cracking the database
store. In CIDR, Vol. 5. 4–7.

[3] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B
Zdonik. 2009. Correlation maps: a compressed access method for exploiting
so� functional dependencies. Proceedings of the VLDB Endowment 2, 1 (2009),
1222–1233.

[4] Todd Schneider. 2016. Uni�ed New York City Taxi and Uber Data. (2016).
h�ps://github.com/toddwschneider/nyc-taxi-data

[5] Praveen Seshadri and Arun Swami. 1995. Generalized partial indexes. In Data
Engineering, 1995. Proceedings of the Eleventh International Conference on. IEEE,
420–427.

[6] James Wagner, Alexander Rasin, Tanu Malik, Karen Heart, Hugo Jehle, and
Jonathan Grier. 2017. Database Forensic Analysis with DBCarver. CIDR.

https://github.com/toddwschneider/nyc-taxi-data

	Abstract
	1 Introduction
	2 Related Work
	2.1 DBCarver

	3 How to Build a Custom Clustered Index
	3.1 Architecture
	3.2 Initial Setup
	3.3 PLI Structure and Maintenance
	3.4 Query rewrite

	4 Experiments
	4.1 Experiment 1: Regular Clustering
	4.2 Experiment 2: Expression Clustering

	5 Conclusion
	References

